These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 9839452)

  • 1. Possible involvement of the ampullary electroreceptor system in detection of frequency-modulated electrocommunication signals in Eigenmannia.
    Naruse M; Kawasaki M
    J Comp Physiol A; 1998 Nov; 183(5):543-52. PubMed ID: 9839452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia.
    Rose GJ; Call SJ
    J Comp Physiol A; 1992 Feb; 170(2):253-61. PubMed ID: 1583609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Converging electroreceptor cells improve sensitivity and tuning.
    Peters RC; Brans RJ; Bretschneider F; Versteeg E; Went A
    Neuroscience; 1997 Nov; 81(1):297-301. PubMed ID: 9300422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coding of time-varying electric field amplitude modulations in a wave-type electric fish.
    Wessel R; Koch C; Gabbiani F
    J Neurophysiol; 1996 Jun; 75(6):2280-93. PubMed ID: 8793741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.
    Baker CA; Ma L; Casareale CR; Carlson BA
    J Neurosci; 2016 Aug; 36(34):8985-9000. PubMed ID: 27559179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain.
    Metzner W; Heiligenberg W
    J Comp Physiol A; 1991 Aug; 169(2):135-50. PubMed ID: 1748973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The African wave-type electric fish, Gymnarchus niloticus, lacks corollary discharge mechanisms for electrosensory gating.
    Kawasaki M
    J Comp Physiol A; 1994 Feb; 174(2):133-44. PubMed ID: 8145186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electroreception, electrogenesis and electric signal evolution.
    Crampton WGR
    J Fish Biol; 2019 Jul; 95(1):92-134. PubMed ID: 30729523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibers.
    Bell CC
    J Neurophysiol; 1990 Feb; 63(2):319-32. PubMed ID: 2313348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural strategies for optimal processing of sensory signals.
    Maler L
    Prog Brain Res; 2007; 165():135-54. PubMed ID: 17925244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coding of stimuli by ampullary afferents in Gnathonemus petersii.
    Engelmann J; Gertz S; Goulet J; Schuh A; von der Emde G
    J Neurophysiol; 2010 Oct; 104(4):1955-68. PubMed ID: 20685928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insight into the mechanisms of neuronal processing from electric fish.
    Zakon HH
    Curr Opin Neurobiol; 2003 Dec; 13(6):744-50. PubMed ID: 14662377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus.
    Walz H; Hupé GJ; Benda J; Lewis JE
    J Physiol Paris; 2013; 107(1-2):13-25. PubMed ID: 22981958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensory coding and corollary discharge effects in mormyrid electric fish.
    Bell CC
    J Exp Biol; 1989 Sep; 146():229-53. PubMed ID: 2689564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the jamming avoidance response and its morphological correlates in the gymnotiform electric fish, Eigenmannia.
    Hagedorn M; Vischer HA; Heiligenberg W
    J Neurobiol; 1992 Dec; 23(10):1446-66. PubMed ID: 1487744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Limits of phase and amplitude sensitivity in the torus semicircularis of Eigenmannia.
    Rose G; Heiligenberg W
    J Comp Physiol A; 1986 Dec; 159(6):813-22. PubMed ID: 3806438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Train signals for electric fish.
    Maler L
    Nature; 1996 Dec; 384(6609):517-8. PubMed ID: 8955265
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.