These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9839863)

  • 1. Cell for measurements of biological tissue complex conductivity.
    Wtorek J; Poliñski A; Stelter J; Nowakowski A
    Technol Health Care; 1998 Sep; 6(2-3):177-93. PubMed ID: 9839863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical computation of impedances of a human tooth for estimation of the root canal length.
    Krizaj D; Jan J; Valencic V
    IEEE Trans Biomed Eng; 2002 Jul; 49(7):746-8. PubMed ID: 12083312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: impedance spectrometry.
    Rigaud B; Morucci JP; Chauveau N
    Crit Rev Biomed Eng; 1996; 24(4-6):257-351. PubMed ID: 9196884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance spectroscopy of human erythrocytes: system calibration and nonlinear modeling.
    Bao JZ; Davis CC; Schmukler RE
    IEEE Trans Biomed Eng; 1993 Apr; 40(4):364-78. PubMed ID: 8375873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Towards virtual electrical breast biopsy: space-frequency MUSIC for trans-admittance data.
    Scholz B
    IEEE Trans Med Imaging; 2002 Jun; 21(6):588-95. PubMed ID: 12166854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The measurement frequency distribution in tissue impedance spectroscopy measurement].
    Lin X; Dong X; Fu F; Wang Y; Zhang G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Dec; 21(6):893-6. PubMed ID: 15646326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural networks method for identification of the objects behind the screen.
    Ratajewicz-Mikolajczak E; Sikora J
    IEEE Trans Med Imaging; 2002 Jun; 21(6):613-9. PubMed ID: 12166857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probe for organ impedance measurement.
    Paulson KS; Pidcock MK; McLeod CN
    IEEE Trans Biomed Eng; 2004 Oct; 51(10):1838-44. PubMed ID: 15490831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The complex impedance frequency response and the equivalent circuit model of human brain].
    Wu X; Dong X; Qin M; Fu F; You F; Liu R; Shi X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):500-3. PubMed ID: 14565024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of human uterine cervical electrical impedance measurements derived using two tetrapolar probes of different sizes.
    Gandhi SV; Walker DC; Brown BH; Anumba DO
    Biomed Eng Online; 2006 Nov; 5():62. PubMed ID: 17125510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction of electrode polarization contributions to the dielectric properties of normal and cancerous breast tissues at audio/radiofrequencies.
    Stoneman MR; Kosempa M; Gregory WD; Gregory CW; Marx JJ; Mikkelson W; Tjoe J; Raicu V
    Phys Med Biol; 2007 Nov; 52(22):6589-604. PubMed ID: 17975285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induced-current electrical impedance tomography: a 2-D theoretical simulation.
    Zlochiver S; Rosenfeld M; Abboud S
    IEEE Trans Med Imaging; 2003 Dec; 22(12):1550-60. PubMed ID: 14649745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-element modeling of needle electrodes in tissue from the perspective of frequent model computation.
    Sel D; Mazeres S; Teissie J; Miklavcic D
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1221-32. PubMed ID: 14619992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Error analysis of tissue resistivity measurement.
    Tsai JZ; Will JA; Hubbard-Van Stelle S; Cao H; Tungjitkusolmun S; Choy YB; Haemmerich D; Vorperian VR; Webster JG
    IEEE Trans Biomed Eng; 2002 May; 49(5):484-94. PubMed ID: 12002180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new method for noninvasive measurement of multilayer tissue conductivity and structure using divided electrodes.
    Zhao X; Kinouchi Y; Yasuno E; Gao D; Iritani T; Morimoto T; Takeuchi M
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):362-70. PubMed ID: 14765709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of the shape of conductivity spectra using differential multi-frequency magnetic induction tomography.
    Brunner P; Merwa R; Missner A; Rosell J; Hollaus K; Scharfetter H
    Physiol Meas; 2006 May; 27(5):S237-48. PubMed ID: 16636414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model for breast cancer lesion estimation: electrical impedance technique using TS2000 commercial system.
    Seo JK; Kwon O; Ammari H; Woo EJ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1898-906. PubMed ID: 15536891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element model of needle electrode spatial sensitivity.
    Høyum P; Kalvøy H; Martinsen ØG; Grimnes S
    Physiol Meas; 2010 Oct; 31(10):1369-79. PubMed ID: 20736490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical sensitivity modeling for the detection of skin tumors by using tetrapolar probe.
    Ramos A; Bertemes-Filho P
    Electromagn Biol Med; 2011 Dec; 30(4):235-45. PubMed ID: 22047461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of two- and four-electrode techniques to characterize blood impedance for the frequency range of 100 Hz to 100 MHz.
    Chang ZY; Pop GM; Meijer GM
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1247-9. PubMed ID: 18334424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.