These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 9840504)
1. Short-term effectiveness of medial efferents does not predict susceptibility to temporary threshold shift in the guinea pig. Zennaro O; Erre JP; Aran JM; Dauman R Acta Otolaryngol; 1998 Sep; 118(5):681-4. PubMed ID: 9840504 [TBL] [Abstract][Full Text] [Related]
2. Olivocochlear activity and temporary threshold shift-susceptibility in humans. Wagner W; Heppelmann G; Kuehn M; Tisch M; Vonthein R; Zenner HP Laryngoscope; 2005 Nov; 115(11):2021-8. PubMed ID: 16319617 [TBL] [Abstract][Full Text] [Related]
3. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Vázquez AE; Jimenez AM; Martin GK; Luebke AE; Lonsbury-Martin BL Hear Res; 2004 Aug; 194(1-2):87-96. PubMed ID: 15276680 [TBL] [Abstract][Full Text] [Related]
4. Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery and effects of lowering L2. Sutton LA; Lonsbury-Martin BL; Martin GK; Whitehead ML Hear Res; 1994 May; 75(1-2):161-74. PubMed ID: 8071143 [TBL] [Abstract][Full Text] [Related]
5. Impact of occupational noise on pure-tone threshold and distortion product otoacoustic emissions after one workday. Müller J; Janssen T Hear Res; 2008 Dec; 246(1-2):9-22. PubMed ID: 18848612 [TBL] [Abstract][Full Text] [Related]
6. Assessment of the noise-protective action of the olivocochlear efferents in humans. Wolpert S; Heyd A; Wagner W Audiol Neurootol; 2014; 19(1):31-40. PubMed ID: 24281009 [TBL] [Abstract][Full Text] [Related]
7. The role of the cochlear efferent system in acquired resistance to noise-induced hearing loss. Zheng XY; Henderson D; McFadden SL; Hu BH Hear Res; 1997 Feb; 104(1-2):191-203. PubMed ID: 9119763 [TBL] [Abstract][Full Text] [Related]
8. Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state? Abel C; Wittekindt A; Kössl M J Neurophysiol; 2009 May; 101(5):2362-71. PubMed ID: 19279155 [TBL] [Abstract][Full Text] [Related]
9. Fine alterations of distortion-product otoacoustic emissions after moderate acoustic overexposure in guinea pigs. Kossowski M; Mom T; Guitton M; Poncet JL; Bonfils P; Avan P Audiology; 2001; 40(3):113-22. PubMed ID: 11465293 [TBL] [Abstract][Full Text] [Related]
10. Association of Caffeine and Hearing Recovery After Acoustic Overstimulation Events in a Guinea Pig Model. Zawawi F; Bezdjian A; Mujica-Mota M; Rappaport J; Daniel SJ JAMA Otolaryngol Head Neck Surg; 2016 Apr; 142(4):383-8. PubMed ID: 26940042 [TBL] [Abstract][Full Text] [Related]
11. Response properties of cochlear efferent neurons: monaural vs. binaural stimulation and the effects of noise. Liberman MC J Neurophysiol; 1988 Nov; 60(5):1779-98. PubMed ID: 3199181 [TBL] [Abstract][Full Text] [Related]
12. Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control. Althen H; Wittekindt A; Gaese B; Kössl M; Abel C J Neurophysiol; 2012 Apr; 107(7):1962-9. PubMed ID: 22262828 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a bipolar change in distortion product otoacoustic emissions during contralateral acoustic stimulation in humans. Müller J; Janssen T; Heppelmann G; Wagner W J Acoust Soc Am; 2005 Dec; 118(6):3747-56. PubMed ID: 16419819 [TBL] [Abstract][Full Text] [Related]
14. Effects of reversible noise exposure on the suppression tuning of rabbit distortion-product otoacoustic emissions. Howard MA; Stagner BB; Lonsbury-Martin BL; Martin GK J Acoust Soc Am; 2002 Jan; 111(1 Pt 1):285-96. PubMed ID: 11831802 [TBL] [Abstract][Full Text] [Related]
16. Effects of glucocorticoid receptor antagonist on CAPs threshold shift due to short-term sound exposure in guinea pigs. Mori T; Fujimura K; Yoshida M; Suzuki H Auris Nasus Larynx; 2004 Dec; 31(4):395-9. PubMed ID: 15571913 [TBL] [Abstract][Full Text] [Related]
17. [Contralateral suppression of latency during distortion product otoacoustic emissions detection in guinea pigs]. Kong W; Yang Y; Zhang W Zhonghua Er Bi Yan Hou Ke Za Zhi; 2001 Aug; 36(4):271-4. PubMed ID: 12761994 [TBL] [Abstract][Full Text] [Related]
18. The effects of continuous versus interrupted noise exposures on distortion product otoacoustic emissions in guinea pigs. Chang KW; Norton SJ Hear Res; 1996 Jul; 96(1-2):1-12. PubMed ID: 8817301 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of the olivocochlear efferent reflex strength in the susceptibility to temporary hearing deterioration after music exposure in young adults. Hannah K; Ingeborg D; Leen M; Annelies B; Birgit P; Freya S; Bart V Noise Health; 2014; 16(69):108-15. PubMed ID: 24804715 [TBL] [Abstract][Full Text] [Related]
20. The medial cochlear efferent system does not appear to contribute to the development of acquired resistance to acoustic trauma. Yamasoba T; Dolan DF Hear Res; 1998 Jun; 120(1-2):143-51. PubMed ID: 9667438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]