These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 9841124)

  • 41. [Psychrophilic sulfate reducing bacterium from aerobic Black Sea waters].
    Zakharova EE; Korneeva VA; Briukhanov AL; Pimenov NV
    Mikrobiologiia; 2012; 81(6):812-4. PubMed ID: 23610934
    [No Abstract]   [Full Text] [Related]  

  • 42. Purification and properties of cytochrome c-555 from phototrophic green sulfur bacteria.
    Meyer TE
    Methods Enzymol; 1994; 243():426-35. PubMed ID: 7830618
    [No Abstract]   [Full Text] [Related]  

  • 43. Heterotrophic sulfur reduction by Thermotoga sp. strain FjSS3.B1.
    Janssen PH; Morgan HW
    FEMS Microbiol Lett; 1992 Sep; 75(2-3):213-7. PubMed ID: 1398039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nuclear-magnetic-resonance studies of Desulfuromonas acetoxidans cytochrome c551.5 (c7).
    Moura JG; Moore GR; Williams RJ; Probst I; Legall J; Xavier AV
    Eur J Biochem; 1984 Nov; 144(3):433-40. PubMed ID: 6092073
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular Basis for Bacterial Growth on Citrate or Malonate.
    Dimroth P
    EcoSal Plus; 2004 Dec; 1(1):. PubMed ID: 26443370
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities.
    Overmann J; van Gemerden H
    FEMS Microbiol Rev; 2000 Dec; 24(5):591-9. PubMed ID: 11077152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 degrees C.
    Brügger K; Chen L; Stark M; Zibat A; Redder P; Ruepp A; Awayez M; She Q; Garrett RA; Klenk HP
    Archaea; 2007 May; 2(2):127-35. PubMed ID: 17350933
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tetrahydrofolate serves as a methyl acceptor in the demethylation of dimethylsulfoniopropionate in cell extracts of sulfate-reducing bacteria.
    Jansen M; Hansen TA
    Arch Microbiol; 1998 Jan; 169(1):84-7. PubMed ID: 9396840
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Degradation of DNA in cells and extracts of the obligately anaerobic bacterium Roseburia cecicola upon exposure to air.
    Martin JH; Savage DC
    Appl Environ Microbiol; 1988 Jun; 54(6):1619-21. PubMed ID: 3415228
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The reducing activity of S-aminoethylcysteine ketimine and similar sulfur-containing ketimines.
    Solinas SP; Pecci L; Montefoschi G; Cavallini D
    Biochem Biophys Res Commun; 1992 Mar; 183(2):481-6. PubMed ID: 1312831
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A bacterium that is not a microbe.
    Levin PA
    Science; 2022 Jun; 376(6600):1379-1380. PubMed ID: 35737764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The biological cycle of sulfur.
    Klimmek O
    Met Ions Biol Syst; 2005; 43():105-30. PubMed ID: 16370116
    [No Abstract]   [Full Text] [Related]  

  • 53. Presence of cytochrome c in Desulfomonas pigra.
    Sperry JF; Wilkins TD
    J Bacteriol; 1977 Jan; 129(1):554-5. PubMed ID: 187572
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sequential Transhydroxylations Converting Hydroxyhydroquinone to Phloroglucinol in the Strictly Anaerobic, Fermentative Bacterium Pelobacter massiliensis.
    Brune A; Schnell S; Schink B
    Appl Environ Microbiol; 1992 Jun; 58(6):1861-8. PubMed ID: 16348719
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Complete Genome Sequence of the Acetylene-Fermenting
    Sutton JM; Baesman SM; Fierst JL; Poret-Peterson AT; Oremland RS; Dunlap DS; Akob DM
    Genome Announc; 2017 Feb; 5(6):. PubMed ID: 28183760
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The fermenting bacterium Malonomonas rubra is phylogenetically related to sulfur-reducing bacteria and contains a c-type cytochrome similar to those of sulfur and sulfate reducers.
    Kolb S; Seeliger S; Springer N; Ludwig W; Schink B
    Syst Appl Microbiol; 1998 Aug; 21(3):340-5. PubMed ID: 9841124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phylogenetic analysis of a novel sulfate-reducing magnetic bacterium, RS-1, demonstrates its membership of the delta-Proteobacteria.
    Kawaguchi R; Burgess JG; Sakaguchi T; Takeyama H; Thornhill RH; Matsunaga T
    FEMS Microbiol Lett; 1995 Mar; 126(3):277-82. PubMed ID: 7537237
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Clostridium sulfidigenes sp. nov., a mesophilic, proteolytic, thiosulfate- and sulfur-reducing bacterium isolated from pond sediment.
    Sallam A; Steinbüchel A
    Int J Syst Evol Microbiol; 2009 Jul; 59(Pt 7):1661-5. PubMed ID: 19542123
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Desulfovibrio marrakechensis sp. nov., a 1,4-tyrosol-oxidizing, sulfate-reducing bacterium isolated from olive mill wastewater.
    Chamkh F; Spröer C; Lemos PC; Besson S; El Asli AG; Bennisse R; Labat M; Reis M; Qatibi AI
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):936-42. PubMed ID: 19406771
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enzymic and genetic basis for bacterial growth on malonate.
    Dimroth P; Hilbi H
    Mol Microbiol; 1997 Jul; 25(1):3-10. PubMed ID: 11902724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.