BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 9841125)

  • 1. Phosphate starvation-independent 2-aminoethylphosphonic acid biodegradation in a newly isolated strain of Pseudomonas putida, NG2.
    Ternan NG; Quinn JP
    Syst Appl Microbiol; 1998 Aug; 21(3):346-52. PubMed ID: 9841125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of two new microbial strains capable of degradation of the naturally occurring organophosphonate - ciliatine.
    Klimek-Ochab M; Obojska A; Picco AM; Lejczak B
    Biodegradation; 2007 Apr; 18(2):223-31. PubMed ID: 16758270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphonoacetate biosynthesis: in vitro detection of a novel NADP(+)-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of the marine Roseovarius nubinhibens ISM.
    Cooley NA; Kulakova AN; Villarreal-Chiu JF; Gilbert JA; McGrath JW; Quinn JP
    Mikrobiologiia; 2011; 80(3):329-34. PubMed ID: 21861368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Aminoethylphosphonate utilization by the cold-adapted Geomyces pannorum P11 strain.
    Klimek-Ochab M; Mucha A; Zymańczyk-Duda E
    Curr Microbiol; 2014 Mar; 68(3):330-5. PubMed ID: 24162513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of a Pseudomonas putida strain able to grow with trimethyl-1,2-dihydroxy-propyl-ammonium as sole source of carbon, energy and nitrogen.
    Kaech A; Egli T
    Syst Appl Microbiol; 2001 Jul; 24(2):252-61. PubMed ID: 11518329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphonate utilization by bacteria.
    Cook AM; Daughton CG; Alexander M
    J Bacteriol; 1978 Jan; 133(1):85-90. PubMed ID: 618850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic and biochemical characterization of a pathway for the degradation of 2-aminoethylphosphonate in Sinorhizobium meliloti 1021.
    Borisova SA; Christman HD; Metcalf ME; Zulkepli NA; Zhang JK; van der Donk WA; Metcalf WW
    J Biol Chem; 2011 Jun; 286(25):22283-90. PubMed ID: 21543322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of p-nitrophenol by P. putida.
    Kulkarni M; Chaudhari A
    Bioresour Technol; 2006 May; 97(8):982-8. PubMed ID: 16009549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-phosphorus bond cleavage activity in cell-free extracts of Enterobacter aerogenes ATCC 15038 and Pseudomonas sp. 4ASW.
    McMullan G; Watkins R; Harper DB; Quinn JP
    Biochem Int; 1991 Sep; 25(2):271-9. PubMed ID: 1789794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dynamics of phosphate mobilization by Enterobacter dissolvens and Pseudomonas putida strains from tricalcium phosphate].
    Lavrent'ieva KV; Cherevach NV; Vinnikov AI
    Mikrobiol Z; 2008; 70(1):25-30. PubMed ID: 18416151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate and carbon source regulation of alkaline phosphatase and phospholipase in Vibrio vulnificus.
    Oh WS; Im YS; Yeon KY; Yoon YJ; Kim JW
    J Microbiol; 2007 Aug; 45(4):311-7. PubMed ID: 17846584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning, mapping, and regulation of Pho regulon genes for phosphonate breakdown by the phosphonatase pathway of Salmonella typhimurium LT2.
    Jiang W; Metcalf WW; Lee KS; Wanner BL
    J Bacteriol; 1995 Nov; 177(22):6411-21. PubMed ID: 7592415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of cyclic amines by a Pseudomonas strain involves an amine mono-oxygenase.
    Trigui M; Pulvin S; Poupin P; Thomas D
    Can J Microbiol; 2003 Mar; 49(3):181-8. PubMed ID: 12795404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The role of mineral phosphorus compounds in naphthalene biodegradation by Pseudomonas putida].
    Puntus IF; Ryazanova LP; Zvonarev AN; Funtikova TV; Kulakovskaya TV
    Prikl Biokhim Mikrobiol; 2015; 51(2):198-205. PubMed ID: 26027355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of tetradecyltrimethylammonium by Pseudomonas putida A ATCC 12633 restricted by accumulation of trimethylamine is alleviated by addition of Al 3+ ions.
    Liffourrena AS; López FG; Salvano MA; Domenech CE; Lucchesi GI
    J Appl Microbiol; 2008 Feb; 104(2):396-402. PubMed ID: 17927742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73.
    Zhen D; Liu H; Wang SJ; Zhang JJ; Zhao F; Zhou NY
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):797-803. PubMed ID: 16583229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural characterization of a 2-aminoethylphosphonate:pyruvate aminotransferase from Pseudomonas aeruginosa PAO1.
    Jia H; Chen Y; Chen Y; Liu R; Zhang Q; Bartlam M
    Biochem Biophys Res Commun; 2021 May; 552():114-119. PubMed ID: 33743347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of 2-aminoethylarsonic acid in Pseudomonas aeruginosa.
    Lacoste AM; Dumora C; Ali BR; Neuzil E; Dixon HB
    J Gen Microbiol; 1992 Jun; 138(6):1283-7. PubMed ID: 1527499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [2-Amino-ethylphosphonic acid transport in Pseudomonas aeruginosa].
    Lacoste AM; Cassaigne A; Tamari M; Neuzil E
    Biochimie; 1976; 58(6):703-12. PubMed ID: 821545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.