These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9841125)

  • 41. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1.
    Wu H; Wei C; Wang Y; He Q; Liang S
    J Environ Sci (China); 2009; 21(1):89-95. PubMed ID: 19402405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biodegradation of cyanides, cyanates and thiocyanates to ammonia and carbon dioxide by immobilized cells of Pseudomonas putida.
    Chapatwala KD; Babu GR; Vijaya OK; Kumar KP; Wolfram JH
    J Ind Microbiol Biotechnol; 1998 Jan; 20(1):28-33. PubMed ID: 9523454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol.
    Meulenberg R; Pepi M; de Bont JA
    Biodegradation; 1996 Aug; 7(4):303-11. PubMed ID: 8987889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparative genomic, proteomic and exoproteomic analyses of three Pseudomonas strains reveals novel insights into the phosphorus scavenging capabilities of soil bacteria.
    Lidbury ID; Murphy AR; Scanlan DJ; Bending GD; Jones AM; Moore JD; Goodall A; Hammond JP; Wellington EM
    Environ Microbiol; 2016 Oct; 18(10):3535-3549. PubMed ID: 27233093
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Initial steps in the degradation of 3,4-dimethylbenzoic acid by Pseudomonas putida strain DMB.
    Baggi G; Bernasconi S; Zangrossi M
    FEMS Microbiol Lett; 1996 Apr; 137(2-3):129-34. PubMed ID: 8998974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pyrimidine base catabolism in Pseudomonas putida biotype B.
    West TP
    Antonie Van Leeuwenhoek; 2001 Oct; 80(2):163-7. PubMed ID: 11759049
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Responses to nutrient starvation in Pseudomonas putida KT2442: two-dimensional electrophoretic analysis of starvation- and stress-induced proteins.
    Givskov M; Eberl L; Molin S
    J Bacteriol; 1994 Aug; 176(16):4816-24. PubMed ID: 8050994
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inorganic phosphate accumulation and cadmium detoxification in Klebsiella aerogenes NCTC 418 growing in continuous culture.
    Aiking H; Stijnman A; van Garderen C; van Heerikhuizen H; van 't Riet J
    Appl Environ Microbiol; 1984 Feb; 47(2):374-7. PubMed ID: 6370136
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds.
    Krzyśko-Lupicka T; Strof W; Kubś K; Skorupa M; Wieczorek P; Lejczak B; Kafarski P
    Appl Microbiol Biotechnol; 1997 Oct; 48(4):549-52. PubMed ID: 9390463
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The 2-aminoethylphosphonate-specific transaminase of the 2-aminoethylphosphonate degradation pathway.
    Kim AD; Baker AS; Dunaway-Mariano D; Metcalf WW; Wanner BL; Martin BM
    J Bacteriol; 2002 Aug; 184(15):4134-40. PubMed ID: 12107130
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of competition for inorganic nutrients in the biodegradation of mixtures of substrates.
    Steffensen WS; Alexander M
    Appl Environ Microbiol; 1995 Aug; 61(8):2859-62. PubMed ID: 7487018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tryptophan metabolism in Klebsiella aerogenes: regulation of the utilization of aromatic amino acids as sources of nitrogen.
    Paris CG; Magasanik B
    J Bacteriol; 1981 Jan; 145(1):257-65. PubMed ID: 6109705
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Research on the catabolism of phosphonic acids: biodegradation of the C-P bond by Pseudomonas aeruginosa].
    Cassaigne A; Lacoste AM; Neuzil E
    C R Acad Hebd Seances Acad Sci D; 1976 May; 282(17):1637-9. PubMed ID: 820467
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Degradation of the herbicide bromoxynil in Pseudomonas putida.
    Vokounová M; Vacek O; Kunc F
    Folia Microbiol (Praha); 1992; 37(2):122-7. PubMed ID: 1505868
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elucidation of the 2-aminoethylphosphonate biosynthetic pathway in Tetrahymena pyriformis.
    Barry RJ; Bowman E; McQueney M; Dunaway-Mariano D
    Biochem Biophys Res Commun; 1988 May; 153(1):177-82. PubMed ID: 3132161
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86.
    Mahajan MC; Phale PS; Vaidyanathan CS
    Arch Microbiol; 1994; 161(5):425-33. PubMed ID: 8042906
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Choline and betaine as inducer agents of Pseudomonas aeruginosa phospholipase C activity in high phosphate medium.
    Lucchesi GI; Lisa TA; Domenech CE
    FEMS Microbiol Lett; 1989 Feb; 57(3):335-8. PubMed ID: 2498157
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular characterization of chloranilic acid degradation in Pseudomonas putida TQ07.
    Treviño-Quintanilla LG; Freyre-González JA; Guillén-Garcés RA; Olvera C
    J Microbiol; 2011 Dec; 49(6):974-80. PubMed ID: 22203561
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Initial in vitro characterisation of phosphonopyruvate hydrolase, a novel phosphate starvation-independent, carbon-phosphorus bond cleavage enzyme in Burkholderia cepacia Pal6.
    Ternan NG; Hamilton JT; Quinn JP
    Arch Microbiol; 2000 Jan; 173(1):35-41. PubMed ID: 10648102
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biodegradability of end-groups of the biocide polyhexamethylene biguanide (PHMB) assessed using model compounds.
    O'Malley LP; Collins AN; White GF
    J Ind Microbiol Biotechnol; 2006 Aug; 33(8):677-84. PubMed ID: 16683128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.