These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 9841400)

  • 1. How to compact DNA.
    Murray AW
    Science; 1998 Oct; 282(5388):425, 427. PubMed ID: 9841400
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorylation and activation of 13S condensin by Cdc2 in vitro.
    Kimura K; Hirano M; Kobayashi R; Hirano T
    Science; 1998 Oct; 282(5388):487-90. PubMed ID: 9774278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation.
    Kimura K; Hirano T
    Cell; 1997 Aug; 90(4):625-34. PubMed ID: 9288743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome condensation by a human condensin complex in Xenopus egg extracts.
    Kimura K; Cuvier O; Hirano T
    J Biol Chem; 2001 Feb; 276(8):5417-20. PubMed ID: 11136719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of CAP-G is required for its chromosomal DNA localization during mitosis.
    Murphy LA; Sarge KD
    Biochem Biophys Res Commun; 2008 Dec; 377(3):1007-11. PubMed ID: 18977199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation.
    Kimura K; Rybenkov VV; Crisona NJ; Hirano T; Cozzarelli NR
    Cell; 1999 Jul; 98(2):239-48. PubMed ID: 10428035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the role of Aurora B on the chromosomal targeting of condensin I.
    Takemoto A; Murayama A; Katano M; Urano T; Furukawa K; Yokoyama S; Yanagisawa J; Hanaoka F; Kimura K
    Nucleic Acids Res; 2007; 35(7):2403-12. PubMed ID: 17392339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering condensin action during chromosome segregation.
    Cuylen S; Haering CH
    Trends Cell Biol; 2011 Sep; 21(9):552-9. PubMed ID: 21763138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin.
    Takemoto A; Kimura K; Yokoyama S; Hanaoka F
    J Biol Chem; 2004 Feb; 279(6):4551-9. PubMed ID: 14607834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner.
    Golfier S; Quail T; Kimura H; Brugués J
    Elife; 2020 May; 9():. PubMed ID: 32396063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome biology: the crux of the ring.
    Uhlmann F; Hopfner KP
    Curr Biol; 2006 Feb; 16(3):R102-5. PubMed ID: 16461262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleolar association of pEg7 and XCAP-E, two members of Xenopus laevis condensin complex in interphase cells.
    Uzbekov R; Timirbulatova E; Watrin E; Cubizolles F; Ogereau D; Gulak P; Legagneux V; Polyakov VJ; Le Guellec K; Kireev I
    J Cell Sci; 2003 May; 116(Pt 9):1667-78. PubMed ID: 12665548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis.
    Hagstrom KA; Holmes VF; Cozzarelli NR; Meyer BJ
    Genes Dev; 2002 Mar; 16(6):729-42. PubMed ID: 11914278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein.
    Hirano T; Kobayashi R; Hirano M
    Cell; 1997 May; 89(4):511-21. PubMed ID: 9160743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitotic chromosome formation and the condensin paradox.
    Gassmann R; Vagnarelli P; Hudson D; Earnshaw WC
    Exp Cell Res; 2004 May; 296(1):35-42. PubMed ID: 15120991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis.
    Losada A; Hirano M; Hirano T
    Genes Dev; 2002 Dec; 16(23):3004-16. PubMed ID: 12464631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells.
    Zhai L; Wang H; Tang W; Liu W; Hao S; Zeng X
    Cell Biol Int; 2011 Jul; 35(7):735-40. PubMed ID: 21395557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Saccharomyces cerevisiae Smc2/4 condensin compacts DNA into (+) chiral structures without net supercoiling.
    Stray JE; Crisona NJ; Belotserkovskii BP; Lindsley JE; Cozzarelli NR
    J Biol Chem; 2005 Oct; 280(41):34723-34. PubMed ID: 16100111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of hCAP-D2, a non-SMC subunit of condensin I, to chromosome and chromosomal protein dynamics during mitosis.
    Watrin E; Legagneux V
    Mol Cell Biol; 2005 Jan; 25(2):740-50. PubMed ID: 15632074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Setting the stage for mitosis: kinase regulation of prophase].
    Hirota T
    Tanpakushitsu Kakusan Koso; 2004 Jun; 49(8):1183-94. PubMed ID: 15209214
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.