These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9841657)

  • 1. Electrokinetic demixing of aqueous two-phase systems. 3. Drop electrophoretic mobilities and demixing rates.
    Raghavarao KSMS; Stewart RM; Rudge SR; Todd P
    Biotechnol Prog; 1998 Nov; 14(6):922-30. PubMed ID: 9841657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic demixing of aqueous two-phase polymer/salt systems.
    Nagaraj N; Chethana S; Raghavarao KS
    Electrophoresis; 2005 Jan; 26(1):10-7. PubMed ID: 15624187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconvolution of electrokinetic and chromatographic contributions to solute migration in stereoselective ion-exchange capillary electrochromatography on monolithic silica capillary columns.
    Preinerstorfer B; Lämmerhofer M; Hoffmann CV; Lubda D; Lindner W
    J Sep Sci; 2008 Sep; 31(16-17):3065-78. PubMed ID: 18428190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.
    Kaneta T; Ueda T; Hata K; Imasaka T
    J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation and comparison of zeta-potentials of silica-based anion-exchange type porous particles for capillary electrochromatography from electrophoretic and electroosmotic mobility.
    Sánchez Muñoz OL; Hernández EP; Lämmerhofer M; Lindner W; Kenndler E
    Electrophoresis; 2003 Jan; 24(3):390-8. PubMed ID: 12569531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physico-chemical features of solvent media in the phases of aqueous polymer two-phase systems.
    Zaslavsky BY; Borvskaya AA; Gulaeva ND; Miheeva LM
    Biotechnol Bioeng; 1992 Jun; 40(1):1-7. PubMed ID: 18601037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of polymers based on a silicone backbone as pseudostationary phases for electrokinetic chromatography.
    Chen T; Palmer CP
    Electrophoresis; 1999 Sep; 20(12):2412-9. PubMed ID: 10499333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microwave-field-assisted enhanced demixing of aqueous two-phase systems.
    Nagaraj N; Narayan AV; Srinivas ND; Raghavarao KS
    Anal Biochem; 2003 Jan; 312(2):134-40. PubMed ID: 12531197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of organic modifiers on solute retention and electrokinetic migrations in micellar electrokinetic capillary chromatography.
    Liu Z; Zou H; Ye M; Ni J; Zhang Y
    Electrophoresis; 1999 Oct; 20(14):2898-908. PubMed ID: 10546826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable electrophoretic mobilities free from Joule heating effects using CE.
    Evenhuis CJ; Hruska V; Guijt RM; Macka M; Gas B; Marriott PJ; Haddad PR
    Electrophoresis; 2007 Oct; 28(20):3759-66. PubMed ID: 17941134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic transport in nanochannels. 1. Theory.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6772-81. PubMed ID: 16255573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High flow-resolution for mobility estimation in 2D-ENMR of proteins using maximum entropy method (MEM-ENMR).
    Thakur SB; He Q
    J Magn Reson; 2006 Nov; 183(1):32-40. PubMed ID: 16901738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual electrophoretic mobilities of liposomes and acidic organelles displaying pH gradients across their membranes.
    Chen Y; Arriaga EA
    Langmuir; 2007 May; 23(10):5584-90. PubMed ID: 17402758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acoustic field assisted demixing of aqueous two-phase systems.
    Nagaraj N; Srinivas ND; Raghavarao KS
    J Chromatogr A; 2002 Nov; 977(2):163-72. PubMed ID: 12456106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic transport in nanochannels. 2. Experiments.
    Pennathur S; Santiago JG
    Anal Chem; 2005 Nov; 77(21):6782-9. PubMed ID: 16255574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discontinuous electrokinetic chromatography of parabens using different substituted resonances as pseudostationary phases.
    Bazzanella A; Bächmann K; Milbradt R; Böhmer V; Vogt W
    Electrophoresis; 1999 Jan; 20(1):92-9. PubMed ID: 10065964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of partitioning behavior of cephalosporins using microemulsion and micellar electrokinetic chromatography.
    Mrestani Y; El-Mokdad N; Rüttinger HH; Neubert R
    Electrophoresis; 1998 Nov; 19(16-17):2895-9. PubMed ID: 9870385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic characterization of poly(dimethylsiloxane) microchannels.
    Spehar AM; Koster S; Linder V; Kulmala S; de Rooij NF; Verpoorte E; Sigrist H; Thormann W
    Electrophoresis; 2003 Nov; 24(21):3674-8. PubMed ID: 14613192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.