These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 9841664)

  • 1. Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci.
    Kakinuma Y
    Microbiol Mol Biol Rev; 1998 Dec; 62(4):1021-45. PubMed ID: 9841664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cation movements at alkaline pH in bacteria growing without respiration.
    Kobayashi H; Saito H; Futatsugi L; Kakegawa T
    Novartis Found Symp; 1999; 221():235-42; discussion 242-5. PubMed ID: 10207923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Transport of protons and potassium ions across the membranes of bacteria Enterococcus hirae depends on ATP and nicotineamide adenine dinucleotides].
    Poladian A; Trchunian A
    Biofizika; 2011; 56(4):684-7. PubMed ID: 21950071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sodium ATPase and sodium/proton antiporter are not obligatory for sodium homeostasis of Enterococcus hirae at acid pH.
    Ikegami M; Takahashi H; Igarashi K; Kakinuma Y
    Biosci Biotechnol Biochem; 2000 May; 64(5):1088-92. PubMed ID: 10879490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium uptake with low affinity and high rate in Enterococcus hirae at alkaline pH.
    Kawano M; Abuki R; Igarashi K; Kakinuma Y
    Arch Microbiol; 2001 Jan; 175(1):41-5. PubMed ID: 11271419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium/proton antiport system of growing Enterococcus hirae at high pH.
    Kakinuma Y; Igarashi K
    J Bacteriol; 1995 Apr; 177(8):2227-9. PubMed ID: 7721716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Growth and proton-potassium exchange in Enterococcus hirae: protonophore effect and the role of oxidation-reduction potential].
    Poladian A; Kirakosian G; Trchunian A
    Biofizika; 2006; 51(3):499-503. PubMed ID: 16808350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae.
    Solioz M; Odermatt A
    J Biol Chem; 1995 Apr; 270(16):9217-21. PubMed ID: 7721839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Changes in ion transport through membranes, ATPase activity and antibiotics effects in Enterococcus hirae after low intensity electromagnetic irradiation of 51,8 and 53,0 GHz frequencies].
    Torgomian É; Oganian V; Blbulian C; Trchunian A
    Biofizika; 2013; 58(4):674-80. PubMed ID: 24455887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute transport and energy transduction in bacteria.
    Konings WN; Poolman B; van Veen HW
    Antonie Van Leeuwenhoek; 1994; 65(4):369-80. PubMed ID: 7832593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transduction and solute transport in streptococci.
    Konings WN; Otto R
    Antonie Van Leeuwenhoek; 1983 Sep; 49(3):247-57. PubMed ID: 6312880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrogenic Na+ transport by Enterococcus hirae Na(+)-ATPase.
    Kakinuma Y; Igarashi K
    FEBS Lett; 1995 Feb; 359(2-3):255-8. PubMed ID: 7867809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of manganese (II) but not nickel (II) ions on Enterococcus hirae cell growth, redox potential decrease, and proton-coupled membrane transport.
    Vardanyan Z; Trchounian A
    Cell Biochem Biophys; 2013; 67(3):1301-6. PubMed ID: 23712873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy coupling to potassium transport in Streptococcus faecalis. Interplay of ATP and the protonmotive force.
    Bakker EP; Harold FM
    J Biol Chem; 1980 Jan; 255(2):433-40. PubMed ID: 6766127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary and secondary transport of cations in bacteria.
    Harold FM; Kakinuma Y
    Ann N Y Acad Sci; 1985; 456():375-83. PubMed ID: 2418733
    [No Abstract]   [Full Text] [Related]  

  • 17. Potassium/proton antiport system is dispensable for growth of Enterococcus hirae at low pH.
    Kakinuma Y; Yasumura K; Igarashi K
    Biosci Biotechnol Biochem; 1999 May; 63(5):875-8. PubMed ID: 10380629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active transport of Ca2+ in bacteria: bioenergetics and function.
    Devés R; Brodie AF
    Mol Cell Biochem; 1981 Apr; 36(2):65-84. PubMed ID: 6113540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of an ethidium efflux system in Enterococcus hirae.
    Midgley M
    FEMS Microbiol Lett; 1994 Jul; 120(1-2):119-23. PubMed ID: 8056283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diverse Physiological Functions of Cation Proton Antiporters across Bacteria and Plant Cells.
    Tsujii M; Tanudjaja E; Uozumi N
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32604959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.