BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 9841778)

  • 1. Industrial dye decolorization by laccases from ligninolytic fungi.
    Rodríguez E; Pickard MA; Vazquez-Duhalt R
    Curr Microbiol; 1999 Jan; 38(1):27-32. PubMed ID: 9841778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of ligninolytic enzymes for dye decolorization by cocultivation of white-rot fungi Pleurotus ostreatus and phanerochaete chrysosporium under solid-state fermentation.
    Verma P; Madamwar D
    Appl Biochem Biotechnol; 2002; 102-103(1-6):109-18. PubMed ID: 12396115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of laccase and manganese peroxidase by Pleurotus pulmonarius in solid-state cultures and application in dye decolorization.
    dos Santos Bazanella GC; de Souza DF; Castoldi R; Oliveira RF; Bracht A; Peralta RM
    Folia Microbiol (Praha); 2013 Nov; 58(6):641-7. PubMed ID: 23645502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of a culture medium for ligninolytic enzyme production and synthetic dye decolorization using response surface methodology.
    Trupkin S; Levin L; Forchiassin F; Viale A
    J Ind Microbiol Biotechnol; 2003 Dec; 30(12):682-90. PubMed ID: 14648345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decolorization of industrial dyes by a Brazilian strain of Pleurotus pulmonarius producing laccase as the sole phenol-oxidizing enzyme.
    Zilly A; Souza CG; Barbosa-Tessmann IP; Peralta RM
    Folia Microbiol (Praha); 2002; 47(3):273-7. PubMed ID: 12094737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decolorization and detoxication of reactive industrial dyes by immobilized fungi Trametes pubescens and Pleurotus ostreatus.
    Casieri L; Varese GC; Anastasi A; Prigione V; Svobodová K; Filippelo Marchisio V; Novotný C
    Folia Microbiol (Praha); 2008; 53(1):44-52. PubMed ID: 18481217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular ligninolytic enzymes production by Pleurotus eryngii on agroindustrial wastes.
    Akpinar M; Urek RO
    Prep Biochem Biotechnol; 2014; 44(8):772-81. PubMed ID: 24279903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligninolytic activity patterns of Pleurotus ostreatus obtained by submerged fermentation in presence of 2,6-dimethoxyphenol and remazol brilliant blue R dye.
    Grandes-Blanco AI; Díaz-Godínez G; Téllez-Téllez M; Delgado-Macuil RJ; Rojas-López M; Bibbins-Martínez MD
    Prep Biochem Biotechnol; 2013; 43(5):468-80. PubMed ID: 23581782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of ligninolytic enzymes and synthetic lignin mineralization by the bird's nest fungus Cyathus stercoreus.
    Sethuraman A; Akin DE; Eriksson KE
    Appl Microbiol Biotechnol; 1999 Nov; 52(5):689-97. PubMed ID: 10570816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening thermotolerant white-rot fungi for decolorization of wastewaters.
    Chairattanamanokorn P; Imai T; Kondo R; Ukita M; Prasertsan P
    Appl Biochem Biotechnol; 2006 Mar; 128(3):195-204. PubMed ID: 16632880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of enzymes produced by white-rot fungus Irpex lacteus in the decolorization of the textile industry effluent.
    Shin KS
    J Microbiol; 2004 Mar; 42(1):37-41. PubMed ID: 15357290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of ligninolytic enzymes by solid-state fermentation using Pleurotus eryngii.
    Akpinar M; Urek RO
    Prep Biochem Biotechnol; 2012; 42(6):582-97. PubMed ID: 23030469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decolorization of textile dyes by laccases from a newly isolated strain of Trametes modesta.
    Nyanhongo GS; Gomes J; Gübitz GM; Zvauya R; Read J; Steiner W
    Water Res; 2002 Mar; 36(6):1449-56. PubMed ID: 11996335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of nitrogen sources and vitamins on ligninolytic enzyme production by some white-rot fungi. Dye decolorization by selected culture filtrates.
    Levin L; Melignani E; Ramos AM
    Bioresour Technol; 2010 Jun; 101(12):4554-63. PubMed ID: 20153961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligninolytic enzyme production in selected sub-tropical white rot fungi under different culture conditions.
    Tekere M; Zvauya R; Read JS
    J Basic Microbiol; 2001; 41(2):115-29. PubMed ID: 11441459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioremediation of direct blue 14 and extracellular ligninolytic enzyme production by white rot fungi: Pleurotus spp.
    Singh MP; Vishwakarma SK; Srivastava AK
    Biomed Res Int; 2013; 2013():180156. PubMed ID: 23841054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Pleurotus ostreatus and Trametes versicolor on triclosan biodegradation and activity of laccase and manganese peroxidase enzymes.
    Maadani Mallak A; Lakzian A; Khodaverdi E; Haghnia GH; Mahmoudi S
    Microb Pathog; 2020 Dec; 149():104473. PubMed ID: 32916239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodecolorization screening of synthetic dyes by four white-rot fungi in a solid medium: possible role of siderophores.
    Minussi RC; de Moraes SG; Pastore GM; Durán N
    Lett Appl Microbiol; 2001 Jul; 33(1):21-5. PubMed ID: 11442809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Grape stalks as substrate for white rot fungi, lignocellulolytic enzyme production and dye decolorization.
    Levin L; Diorio L; Grassi E; Forchiassin F
    Rev Argent Microbiol; 2012; 44(2):105-12. PubMed ID: 22997770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct red decolorization and ligninolytic enzymes production by improved strains of Pleurotus using basidiospore derived monokaryons.
    Srivastava AK; Vishwakarma SK; Pandey VK; Singh MP
    Cell Mol Biol (Noisy-le-grand); 2014 Dec; 60(5):15-21. PubMed ID: 25535707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.