These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9841783)

  • 1. Metabolism of L-phenylalanine and L-tyrosine by the phototrophic bacterium Rhodobacter capsulatus.
    Sáez LP; Castillo F; Caballero FJ
    Curr Microbiol; 1999 Jan; 38(1):51-6. PubMed ID: 9841783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial photodegradation of aminoarenes. Metabolism of 2-amino-4-nitrophenol by Rhodobacter capsulatus.
    Witte CP; Blasco R; Castillo F
    Appl Biochem Biotechnol; 1998 Mar; 69(3):191-200. PubMed ID: 9584054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arginine catabolism in the phototrophic bacterium Rhodobacter capsulatus E1F1. Purification and properties of arginase.
    Moreno-Vivián C; Soler G; Castillo F
    Eur J Biochem; 1992 Mar; 204(2):531-7. PubMed ID: 1541268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of p-nitrophenol by the phototrophic bacterium Rhodobacter capsulatus.
    Roldán MD; Blasco R; Caballero FJ; Castillo F
    Arch Microbiol; 1998 Jan; 169(1):36-42. PubMed ID: 9396833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of the purple bacterium Rhodobacter capsulatus on the aromatic compound hippurate.
    Madigan MT; Jung DO; Resnick SM
    Arch Microbiol; 2001 Jun; 175(6):462-5. PubMed ID: 11491088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catabolism of L-phenylalanine and L-tyrosine by Rhodobacter sphaeroides OU5 occurs through 3,4-dihydroxyphenylalanine.
    Ranjith NK; Sasikala Ch; Ramana ChV
    Res Microbiol; 2007; 158(6):506-11. PubMed ID: 17616348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-dependent degradation of nitrophenols by the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Blasco R; Castillo F
    Appl Environ Microbiol; 1992 Feb; 58(2):690-5. PubMed ID: 1610190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes.
    Leimkühler S; Kern M; Solomon PS; McEwan AG; Schwarz G; Mendel RR; Klipp W
    Mol Microbiol; 1998 Feb; 27(4):853-69. PubMed ID: 9515710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary alcohols and di-alcohols as growth substrates for the purple nonsulfur bacterium Rhodobacter capsulatus.
    Pantazopoulous PE; Madigan MT
    Can J Microbiol; 2000 Dec; 46(12):1166-70. PubMed ID: 11142409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic analysis of a Rhodobacter capsulatus gene region involved in utilization of taurine as a sulfur source.
    Masepohl B; Führer F; Klipp W
    FEMS Microbiol Lett; 2001 Nov; 205(1):105-11. PubMed ID: 11728723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role for draTG and rnf genes in reduction of 2,4-dinitrophenol by Rhodobacter capsulatus.
    Sáez LP; García P; Martínez-Luque M; Klipp W; Blasco R; Castillo F
    J Bacteriol; 2001 Mar; 183(5):1780-3. PubMed ID: 11160111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Transamination of L-aspartate and L-phenylalanine in Escherichia coli K 12].
    Chesne S; Montmitonnet A; Pelmont J
    Biochimie; 1975; 57(9):1029-34. PubMed ID: 769847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halotolerance of the Phototrophic Bacterium Rhodobacter capsulatus E1F1 Is Dependent on the Nitrogen Source.
    Igeno MI; Del Moral CG; Castillo F; Caballero FJ
    Appl Environ Microbiol; 1995 Aug; 61(8):2970-5. PubMed ID: 16535098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of pyruvate oxidoreductase from the photosynthetic bacterium Rhodobacter capsulatus.
    Yakunin AF; Hallenbeck PC
    Biochim Biophys Acta; 1998 Nov; 1409(1):39-49. PubMed ID: 9804883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a nitrophenol reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1.
    Blasco R; Castillo F
    Appl Environ Microbiol; 1993 Jun; 59(6):1774-8. PubMed ID: 8328801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Investigation of the anaerobic metabolism of Rhodobacter capsulatus with a flux model].
    Golomysova AN; Ivanov PS
    Biofizika; 2011; 56(1):85-98. PubMed ID: 21442889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen and molybdenum control of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus.
    Masepohl B; Hallenbeck PC
    Adv Exp Med Biol; 2010; 675():49-70. PubMed ID: 20532735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions between nitrate assimilation and 2,4-dinitrophenol cometabolism in Rhodobacter capsulatus E1F1.
    Luque-Almagro VM; Blasco R; Sáez LP; Roldán MD; Moreno-Vivián C; Castillo F; Martínez-Luque M
    Curr Microbiol; 2006 Jul; 53(1):37-42. PubMed ID: 16775785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Hfq-like protein NrfA of the phototrophic purple bacterium Rhodobacter capsulatus controls nitrogen fixation via regulation of nifA and anfA expression.
    Drepper T; Raabe K; Giaourakis D; Gendrullis M; Masepohl B; Klipp W
    FEMS Microbiol Lett; 2002 Oct; 215(2):221-7. PubMed ID: 12399038
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Transamination between amino acids and alpha-ketoglutaric acid in the carp].
    Creach Y
    Arch Sci Physiol (Paris); 1967; 21(4):443-8. PubMed ID: 6077794
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.