These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 9841896)
1. On the aerodynamics of moult gaps in birds. HedenstrOM A; Sunada S J Exp Biol; 1999 Jan; 202(1):67-76. PubMed ID: 9841896 [TBL] [Abstract][Full Text] [Related]
2. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult. Achache Y; Sapir N; Elimelech Y R Soc Open Sci; 2018 Feb; 5(2):171766. PubMed ID: 29515884 [TBL] [Abstract][Full Text] [Related]
3. Hummingbird hovering energetics during moult of primary flight feathers. Chai P J Exp Biol; 1997 May; 200(Pt 10):1527-36. PubMed ID: 9192500 [TBL] [Abstract][Full Text] [Related]
4. Wake analysis of drag components in gliding flight of a jackdaw ( KleinHeerenbrink M; Hedenström A Interface Focus; 2017 Feb; 7(1):20160081. PubMed ID: 28163873 [TBL] [Abstract][Full Text] [Related]
5. A lifting line model to investigate the influence of tip feathers on wing performance. Fluck M; Crawford C Bioinspir Biomim; 2014 Nov; 9(4):046017. PubMed ID: 25418986 [TBL] [Abstract][Full Text] [Related]
6. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack. Tomotani BM; Muijres FT J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31085600 [TBL] [Abstract][Full Text] [Related]
7. Divergent primary moult-A rare moult sequence among Western Palaearctic passerines. Kiat Y PLoS One; 2017; 12(10):e0187282. PubMed ID: 29088288 [TBL] [Abstract][Full Text] [Related]
8. Scaling trends of bird's alular feathers in connection to leading-edge vortex flow over hand-wing. Linehan T; Mohseni K Sci Rep; 2020 May; 10(1):7905. PubMed ID: 32404925 [TBL] [Abstract][Full Text] [Related]
14. The Aerodynamic Effect of an Alula-like Vortex Generator on a Revolving Wing. Chung PH; Chang PH; Yeh SI Biomimetics (Basel); 2022 Sep; 7(3):. PubMed ID: 36134932 [TBL] [Abstract][Full Text] [Related]
15. Do seaducks minimise the flightless period? Inter- and intra-specific comparisons of remigial moult. Viain A; Savard JP; Gilliland S; Perry MC; Guillemette M PLoS One; 2014; 9(9):e107929. PubMed ID: 25251375 [TBL] [Abstract][Full Text] [Related]
16. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency. Thielicke W; Stamhuis EJ Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756 [TBL] [Abstract][Full Text] [Related]
17. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
18. Experimental Investigation of Aerodynamics of Feather-Covered Flapping Wing. Yang W; Song B Appl Bionics Biomech; 2017; 2017():3019640. PubMed ID: 29527117 [TBL] [Abstract][Full Text] [Related]
19. Aerodynamic yawing moment characteristics of bird wings. Sachs G J Theor Biol; 2005 Jun; 234(4):471-8. PubMed ID: 15808868 [TBL] [Abstract][Full Text] [Related]
20. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces. Lees JJ; Dimitriadis G; Nudds RL PeerJ; 2016; 4():e2495. PubMed ID: 27781155 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]