These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9842562)

  • 1. Gore-Tex as an orbital implant material.
    Dei Cas R; Maus M; Bilyk J; Chang W; Eagle RC; Rubin P
    Ophthalmic Plast Reconstr Surg; 1998 Nov; 14(6):425-31. PubMed ID: 9842562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary placement of a titanium motility post in a porous polyethylene orbital implant: animal model with quantitative assessment of fibrovascular ingrowth and vascular density.
    Hsu WC; Green JP; Spilker MH; Rubin PA
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):370-9. PubMed ID: 11021387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rate of vascularization and exposure of silicone-capped porous polyethylene spherical implants: an animal model.
    Kalwerisky K; Mihora L; Czyz CN; Foster JA; Holck DE
    Ophthalmic Plast Reconstr Surg; 2013; 29(5):350-6. PubMed ID: 23811596
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of hyperbaric oxygen therapy and irradiation on hydroxyapatite ocular implant exposure and fibrovascular ingrowth in New Zealand white rabbits.
    DeBacker CM; Dutton JJ; Proia AD; Halperin EC; Wagle TN; Holck DE
    Ophthalmic Plast Reconstr Surg; 1999 Nov; 15(6):412-9. PubMed ID: 10588250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of fibrovascular ingrowth into hydroxyapatite and porous polyethylene orbital implants.
    Rubin PA; Popham JK; Bilyk JR; Shore JW
    Ophthalmic Plast Reconstr Surg; 1994 Jun; 10(2):96-103. PubMed ID: 7522048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Histologic changes in transplanted expanded polytetrafluoroethylene in an animal model.
    Kim JH; Park CH; Lee OJ; Lee JH; Hong SM
    Laryngoscope; 2012 Jan; 122(1):17-22. PubMed ID: 22052468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of early fibrovascular proliferation according to orbital implant in orbital floor fracture reconstruction.
    Lee H; Baek S
    J Craniofac Surg; 2012 Sep; 23(5):1518-23. PubMed ID: 22976649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glass-ionomer cement: evaluation as an orbital implant.
    Hintschich C; Raithel E; Craig GT; Bernatzky G; Alzner E; Brook IM; Collin R
    Graefes Arch Clin Exp Ophthalmol; 1999 Feb; 237(2):169-74. PubMed ID: 9987636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of experimental porous silicone implants and porous silicone implants.
    Son J; Kim CS; Yang J
    Graefes Arch Clin Exp Ophthalmol; 2012 Jun; 250(6):879-85. PubMed ID: 22202952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of a bioresorbable orbital implant.
    Jordan DR; Brownstein S; Gilberg S; Matthew B; Mawn L; Khouri L
    Ophthalmic Plast Reconstr Surg; 2002 Sep; 18(5):342-8. PubMed ID: 12352820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implants of Gore-Tex.
    Neel HB
    Arch Otolaryngol; 1983 Jul; 109(7):427-33. PubMed ID: 6860217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and histologic response of subcutaneous expanded polytetrafluoroethylene (Gore-Tex) and porous high-density polyethylene (Medpor) implants to acute and early infection.
    Sclafani AP; Thomas JR; Cox AJ; Cooper MH
    Arch Otolaryngol Head Neck Surg; 1997 Mar; 123(3):328-36. PubMed ID: 9076241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bovine hydroxyapatite orbital implant: a preliminary report.
    Perry JD; Goldberg RA; McCann JD; Shorr N; Engstrom R; Tong J
    Ophthalmic Plast Reconstr Surg; 2002 Jul; 18(4):268-74. PubMed ID: 12142759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonographic monitoring of implant thickness after augmentation rhinoplasty with expanded polytetrafluoroethylene.
    Jung YG; Kim HY; Dhong HJ; Park KN; Lee HJ; Lim YJ; Min JY
    Am J Rhinol Allergy; 2009; 23(1):105-10. PubMed ID: 19379623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue ingrowth into perforated polymethylmethacrylate orbital implants: an experimental study.
    Miyashita D; Chahud F; da Silva GE; de Albuquerque VB; Garcia DM; Velasco e Cruz AA
    Ophthalmic Plast Reconstr Surg; 2013; 29(3):160-3. PubMed ID: 23446301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of rates of fibrovascular ingrowth in wrapped versus unwrapped hydroxyapatite spheres in a rabbit model.
    Gayre GS; Lipham W; Dutton JJ
    Ophthalmic Plast Reconstr Surg; 2002 Jul; 18(4):275-80. PubMed ID: 12142760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of alloplast materials in experimental extraocular muscle surgery.
    Ugurbas SC; Kocer NE; Oto S; Kahraman B; Akova YA
    Ophthalmic Res; 2010; 44(1):50-6. PubMed ID: 20215807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical and histopathologic review of 18 explanted porous polyethylene orbital implants.
    Chuo JY; Dolman PJ; Ng TL; Buffam FV; White VA
    Ophthalmology; 2009 Feb; 116(2):349-54. PubMed ID: 19091412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brazilian hydroxyapatite implant.
    Jordan DR; Hwang I; McEachren T; Brownstein S; Gilberg S; Grahovac S; Mawn L
    Ophthalmic Plast Reconstr Surg; 2000 Sep; 16(5):363-9. PubMed ID: 11021386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Gore-Tex implants in rhinoplasty reexamined after 17 years.
    Conrad K; Torgerson CS; Gillman GS
    Arch Facial Plast Surg; 2008; 10(4):224-31. PubMed ID: 18645088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.