These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 9842728)
1. Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Walsh K; Jones GJ; Dunstan RH Phytochemistry; 1998 Nov; 49(5):1227-39. PubMed ID: 9842728 [TBL] [Abstract][Full Text] [Related]
2. Effects of different cultivation conditions on the production of β-cyclocitral and β-ionone in Microcystis aeruginosa. Moretto JAS; de Freitas PNN; de Almeida ÉC; Altarugio LM; da Silva SV; de Fátima Fiore M; Pinto E BMC Microbiol; 2022 Mar; 22(1):78. PubMed ID: 35321650 [TBL] [Abstract][Full Text] [Related]
3. Characterization of typical taste and odor compounds formed by Microcystis aeruginosa. Zhang K; Lin TF; Zhang T; Li C; Gao N J Environ Sci (China); 2013 Aug; 25(8):1539-48. PubMed ID: 24520691 [TBL] [Abstract][Full Text] [Related]
4. Responses of the toxic cyanobacterium Microcystis aeruginosa to iron and humic substances. Kosakowska A; Nedzi M; Pempkowiak J Plant Physiol Biochem; 2007 May; 45(5):365-70. PubMed ID: 17509890 [TBL] [Abstract][Full Text] [Related]
5. Differences in susceptibility of cyanobacteria species to lytic volatile organic compounds and influence on seasonal succession. Arii S; Yamashita R; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada KI Chemosphere; 2021 Dec; 284():131378. PubMed ID: 34217930 [TBL] [Abstract][Full Text] [Related]
6. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris. Xu Q; Yang L; Yang W; Bai Y; Hou P; Zhao J; Zhou L; Zuo Z Ecotoxicol Environ Saf; 2017 Jan; 135():191-200. PubMed ID: 27741460 [TBL] [Abstract][Full Text] [Related]
7. Kinetics of cell lysis for Microcystis aeruginosa and Nitzschia palea in the exposure to β-cyclocitral. Chang DW; Hsieh ML; Chen YM; Lin TF; Chang JS J Hazard Mater; 2011 Jan; 185(2-3):1214-20. PubMed ID: 21051144 [TBL] [Abstract][Full Text] [Related]
8. Volatile organic compounds derived from 2-keto-acid decarboxylase in Microcystis aeruginosa. Hasegawa M; Nishizawa A; Tsuji K; Kimura S; Harada K Microbes Environ; 2012; 27(4):525-8. PubMed ID: 23047148 [TBL] [Abstract][Full Text] [Related]
9. [Effects of EDTA and iron on growth and competition of Microcystis aeruginosa and Scenedesmus quadricauda]. Chu ZS; Jin XC; Yan F; Zheng SF; Pang Y; Zeng QR Huan Jing Ke Xue; 2007 Nov; 28(11):2457-61. PubMed ID: 18290465 [TBL] [Abstract][Full Text] [Related]
10. β-cyclocitral, a novel AChE inhibitor, contributes to the defense of Microcystis aeruginosa against Daphnia grazing. Chen W; Dou J; Xu X; Ma X; Chen J; Liu X J Hazard Mater; 2024 Mar; 465():133248. PubMed ID: 38147752 [TBL] [Abstract][Full Text] [Related]
11. Effects of high light and temperature on Microcystis aeruginosa cell growth and β-cyclocitral emission. Zheng T; Zhou M; Yang L; Wang Y; Wang Y; Meng Y; Liu J; Zuo Z Ecotoxicol Environ Saf; 2020 Apr; 192():110313. PubMed ID: 32066007 [TBL] [Abstract][Full Text] [Related]
12. β-cyclocitral, a grazer defence signal unique to the cyanobacterium Microcystis. Jüttner F; Watson SB; von Elert E; Köster O J Chem Ecol; 2010 Dec; 36(12):1387-97. PubMed ID: 21072572 [TBL] [Abstract][Full Text] [Related]
13. Exposure of Microcystis aeruginosa to Hydrogen Peroxide under Light: Kinetic Modeling of Cell Rupture and Simultaneous Microcystin Degradation. Huo X; Chang DW; Tseng JH; Burch MD; Lin TF Environ Sci Technol; 2015 May; 49(9):5502-10. PubMed ID: 25821997 [TBL] [Abstract][Full Text] [Related]
14. Effect of photoreactivation on ultraviolet inactivation of Microcystis aeruginosa. Sakai H; Katayama H; Oguma K; Ohgaki S Water Sci Technol; 2011; 63(6):1224-9. PubMed ID: 21436560 [TBL] [Abstract][Full Text] [Related]
15. Effects of phosphorus sources on volatile organic compound emissions from Microcystis flos-aquae and their toxic effects on Chlamydomonas reinhardtii. Zuo Z; Yang Y; Xu Q; Yang W; Zhao J; Zhou L Environ Geochem Health; 2018 Aug; 40(4):1283-1298. PubMed ID: 29264818 [TBL] [Abstract][Full Text] [Related]
16. Analytical Technique Optimization on the Detection of β-cyclocitral in Yamashita R; Bober B; Kanei K; Arii S; Tsuji K; Harada KI Molecules; 2020 Feb; 25(4):. PubMed ID: 32075007 [TBL] [Abstract][Full Text] [Related]
17. Low concentrations of polycyclic aromatic hydrocarbons promote the growth of Microcystis aeruginosa. Zhu X; Kong H; Gao Y; Wu M; Kong F J Hazard Mater; 2012 Oct; 237-238():371-5. PubMed ID: 22954602 [TBL] [Abstract][Full Text] [Related]
18. Effects of nitrogen nutrients on the volatile organic compound emissions from Microcystis aeruginosa. Zuo Z; Yang L; Chen S; Ye C; Han Y; Wang S; Ma Y Ecotoxicol Environ Saf; 2018 Oct; 161():214-220. PubMed ID: 29885617 [TBL] [Abstract][Full Text] [Related]
19. Cyanobacterial blue color formation during lysis under natural conditions. Arii S; Tsuji K; Tomita K; Hasegawa M; Bober B; Harada K Appl Environ Microbiol; 2015 Apr; 81(8):2667-75. PubMed ID: 25662969 [TBL] [Abstract][Full Text] [Related]
20. Iron-stimulated toxin production in Microcystis aeruginosa. Utkilen H; Gjølme N Appl Environ Microbiol; 1995 Feb; 61(2):797-800. PubMed ID: 7574617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]