These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 9843386)
21. Crystal structure of the oxidised and reduced acidic cytochrome c3from Desulfovibrio africanus. Nørager S; Legrand P; Pieulle L; Hatchikian C; Roth M J Mol Biol; 1999 Jul; 290(4):881-902. PubMed ID: 10398589 [TBL] [Abstract][Full Text] [Related]
22. Molecular dynamics study of Desulfovibrio africanus cytochrome c3 in oxidized and reduced forms. Bret C; Roth M; Nørager S; Hatchikian EC; Field MJ Biophys J; 2002 Dec; 83(6):3049-65. PubMed ID: 12496077 [TBL] [Abstract][Full Text] [Related]
23. Control of the redox potential in c-type cytochromes: importance of the entropic contribution. Bertrand P; Mbarki O; Asso M; Blanchard L; Guerlesquin F; Tegoni M Biochemistry; 1995 Sep; 34(35):11071-9. PubMed ID: 7669764 [TBL] [Abstract][Full Text] [Related]
24. Roles of noncoordinated aromatic residues in redox regulation of cytochrome c3 from Desulfovibrio vulgaris Miyazaki F. Takayama Y; Harada E; Kobayashi R; Ozawa K; Akutsu H Biochemistry; 2004 Aug; 43(34):10859-66. PubMed ID: 15323546 [TBL] [Abstract][Full Text] [Related]
25. Molecular dynamics simulation of cytochrome c3: studying the reduction processes using free energy calculations. Soares CM; Martel PJ; Mendes J; Carrondo MA Biophys J; 1998 Apr; 74(4):1708-21. PubMed ID: 9545034 [TBL] [Abstract][Full Text] [Related]
26. Functional properties of type I and type II cytochromes c3 from Desulfovibrio africanus. Paquete CM; Pereira PM; Catarino T; Turner DL; Louro RO; Xavier AV Biochim Biophys Acta; 2007 Feb; 1767(2):178-88. PubMed ID: 17316553 [TBL] [Abstract][Full Text] [Related]
27. Redox chemistry and acid-base equilibria of mitochondrial plant cytochromes c. Battistuzzi G; Borsari M; Cowan JA; Eicken C; Loschi L; Sola M Biochemistry; 1999 Apr; 38(17):5553-62. PubMed ID: 10220343 [TBL] [Abstract][Full Text] [Related]
28. Proton-assisted two-electron transfer in natural variants of tetraheme cytochromes from Desulfomicrobium Sp. Correia IJ; Paquete CM; Coelho A; Almeida CC; Catarino T; Louro RO; Frazão C; Saraiva LM; Carrondo MA; Turner DL; Xavier AV J Biol Chem; 2004 Dec; 279(50):52227-37. PubMed ID: 15456779 [TBL] [Abstract][Full Text] [Related]
29. Electric-field-induced redox potential shifts of tetraheme cytochromes c3 immobilized on self-assembled monolayers: surface-enhanced resonance Raman spectroscopy and simulation studies. Rivas L; Soares CM; Baptista AM; Simaan J; Di Paolo RE; Murgida DH; Hildebrandt P Biophys J; 2005 Jun; 88(6):4188-99. PubMed ID: 15764652 [TBL] [Abstract][Full Text] [Related]
30. Kinetic study of the reduction mechanism for Desulfovibrio gigas cytochrome c3. Catarino T; Coletta M; LeGall J; Xavier AV Eur J Biochem; 1991 Dec; 202(3):1107-13. PubMed ID: 1662601 [TBL] [Abstract][Full Text] [Related]
31. The structural origin of nonplanar heme distortions in tetraheme ferricytochromes c3. Ma JG; Zhang J; Franco R; Jia SL; Moura I; Moura JJ; Kroneck PM; Shelnutt JA Biochemistry; 1998 Sep; 37(36):12431-42. PubMed ID: 9730815 [TBL] [Abstract][Full Text] [Related]
32. Thermodynamic characterization of the redox centres in a representative domain of a novel c-type multihaem cytochrome. Morgado L; Fernandes AP; Londer YY; Pokkuluri PR; Schiffer M; Salgueiro CA Biochem J; 2009 May; 420(3):485-92. PubMed ID: 19351328 [TBL] [Abstract][Full Text] [Related]
33. NMR studies of electron transfer mechanisms in a protein with interacting redox centres: Desulfovibrio gigas cytochrome c3. Santos H; Moura JJ; Moura I; LeGall J; Xavier AV Eur J Biochem; 1984 Jun; 141(2):283-96. PubMed ID: 6329752 [TBL] [Abstract][Full Text] [Related]
34. Redox interaction of cytochrome c3 with [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F. Yahata N; Saitoh T; Takayama Y; Ozawa K; Ogata H; Higuchi Y; Akutsu H Biochemistry; 2006 Feb; 45(6):1653-62. PubMed ID: 16460012 [TBL] [Abstract][Full Text] [Related]
35. Model of a complex between the tetrahemic cytochrome c3 and the ferredoxin I from Desulfovibrio desulfuricans (Norway strain). Cambillau C; Frey M; Mossé J; Guerlesquin F; Bruschi M Proteins; 1988; 4(1):63-70. PubMed ID: 2847143 [TBL] [Abstract][Full Text] [Related]
36. Protein conformational changes in tetraheme cytochromes detected by FTIR spectroelectrochemistry: Desulfovibrio desulfuricans Norway 4 and Desulfovibrio gigas cytochromes c3. Schlereth DD; Fernández VM; Mäntele W Biochemistry; 1993 Sep; 32(35):9199-208. PubMed ID: 8396427 [TBL] [Abstract][Full Text] [Related]
37. Conformational component in the coupled transfer of multiple electrons and protons in a monomeric tetraheme cytochrome. Louro RO; Bento I; Matias PM; Catarino T; Baptista AM; Soares CM; Carrondo MA; Turner DL; Xavier AV J Biol Chem; 2001 Nov; 276(47):44044-51. PubMed ID: 11551953 [TBL] [Abstract][Full Text] [Related]
38. EPR determination of interaction redox potentials in a multiheme cytochrome: cytochrome c3 from Desulfovibrio desulfuricans Norway. Gayda JP; Benosman H; Bertrand P; More C; Asso M Eur J Biochem; 1988 Oct; 177(1):199-206. PubMed ID: 2846296 [TBL] [Abstract][Full Text] [Related]
39. Redox thermodynamics of the native and alkaline forms of eukaryotic and bacterial class I cytochromes c. Battistuzzi G; Borsari M; Sola M; Francia F Biochemistry; 1997 Dec; 36(51):16247-58. PubMed ID: 9405059 [TBL] [Abstract][Full Text] [Related]
40. Estimation of microscopic redox potentials of a tetraheme protein, cytochrome c3 of Desulfovibrio vulgaris, Miyazaki F, and partial assignments of heme groups. Fan KJ; Akutsu H; Kyogoku Y; Niki K Biochemistry; 1990 Mar; 29(9):2257-63. PubMed ID: 2159795 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]