These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 9843393)
41. Analysis of the structure and folding of the 3' genomic RNA of flaviviruses. Shi PY; Sklyarevskaya T; Kebbekus P; Brinton M; Wilson WD Nucleic Acids Symp Ser; 1997; (36):52-5. PubMed ID: 9478204 [TBL] [Abstract][Full Text] [Related]
42. Structural and thermodynamic studies on mutant RNA motifs that impair the specificity between a viral replicase and its promoter. Kim CH; Tinoco I J Mol Biol; 2001 Mar; 307(3):827-39. PubMed ID: 11273704 [TBL] [Abstract][Full Text] [Related]
43. Thermodynamic characterization of naturally occurring RNA single mismatches with G-U nearest neighbors. Davis AR; Znosko BM Biochemistry; 2008 Sep; 47(38):10178-87. PubMed ID: 18754680 [TBL] [Abstract][Full Text] [Related]
44. Electrophoretic mobility is a reporter of hairpin structure in single-stranded DNA oligomers. Stellwagen E; Abdulla A; Dong Q; Stellwagen NC Biochemistry; 2007 Sep; 46(38):10931-41. PubMed ID: 17764160 [TBL] [Abstract][Full Text] [Related]
45. Selection for thermodynamically stable DNA tetraloops using temperature gradient gel electrophoresis reveals four motifs: d(cGNNAg), d(cGNABg),d(cCNNGg), and d(gCNNGc). Nakano M; Moody EM; Liang J; Bevilacqua PC Biochemistry; 2002 Dec; 41(48):14281-92. PubMed ID: 12450393 [TBL] [Abstract][Full Text] [Related]
47. Hydration of Watson-Crick base pairs and dehydration of Hoogsteen base pairs inducing structural polymorphism under molecular crowding conditions. Miyoshi D; Nakamura K; Tateishi-Karimata H; Ohmichi T; Sugimoto N J Am Chem Soc; 2009 Mar; 131(10):3522-31. PubMed ID: 19236045 [TBL] [Abstract][Full Text] [Related]
48. Structural conservation in RNA loops III and VI of the internal ribosome entry sites of enteroviruses and rhinoviruses. Klinck R; Sprules T; Gehring K Biochem Biophys Res Commun; 1998 Jun; 247(3):876-81. PubMed ID: 9647786 [TBL] [Abstract][Full Text] [Related]
49. Nearest-neighbor thermodynamics and NMR of DNA sequences with internal A.A, C.C, G.G, and T.T mismatches. Peyret N; Seneviratne PA; Allawi HT; SantaLucia J Biochemistry; 1999 Mar; 38(12):3468-77. PubMed ID: 10090733 [TBL] [Abstract][Full Text] [Related]
50. Thermal and urea-induced unfolding of the marginally stable lac repressor DNA-binding domain: a model system for analysis of solute effects on protein processes. Felitsky DJ; Record MT Biochemistry; 2003 Feb; 42(7):2202-17. PubMed ID: 12590610 [TBL] [Abstract][Full Text] [Related]
51. Influence of neighboring base pairs on the stability of single base bulges and base pairs in a DNA fragment. Ke SH; Wartell RM Biochemistry; 1995 Apr; 34(14):4593-600. PubMed ID: 7718561 [TBL] [Abstract][Full Text] [Related]
52. The effect of base sequence on the stability of RNA and DNA single base bulges. Zhu J; Wartell RM Biochemistry; 1999 Nov; 38(48):15986-93. PubMed ID: 10625466 [TBL] [Abstract][Full Text] [Related]
53. The thermal stability of DNA fragments with tandem mismatches at a d(CXYG).d(CY'X'G) site. Ke SH; Wartell RM Nucleic Acids Res; 1996 Feb; 24(4):707-12. PubMed ID: 8604314 [TBL] [Abstract][Full Text] [Related]
55. Isolation and characterization of a family of stable RNA tetraloops with the motif YNMG that participate in tertiary interactions. Proctor DJ; Schaak JE; Bevilacqua JM; Falzone CJ; Bevilacqua PC Biochemistry; 2002 Oct; 41(40):12062-75. PubMed ID: 12356306 [TBL] [Abstract][Full Text] [Related]
56. Influence of nearest neighbor sequence on the stability of base pair mismatches in long DNA; determination by temperature-gradient gel electrophoresis. Ke SH; Wartell RM Nucleic Acids Res; 1993 Nov; 21(22):5137-43. PubMed ID: 8255768 [TBL] [Abstract][Full Text] [Related]
57. Differences between DNA base pair stacking energies are conserved over a wide range of ionic conditions. Johnson T; Zhu J; Wartell RM Biochemistry; 1998 Sep; 37(35):12343-50. PubMed ID: 9724548 [TBL] [Abstract][Full Text] [Related]
58. Structures, kinetics, thermodynamics, and biological functions of RNA hairpins. Bevilacqua PC; Blose JM Annu Rev Phys Chem; 2008; 59():79-103. PubMed ID: 17937599 [TBL] [Abstract][Full Text] [Related]
59. From RNA hairpins to kisses to pseudoknots. Tinoco I Nucleic Acids Symp Ser; 1997; (36):49-51. PubMed ID: 9478203 [TBL] [Abstract][Full Text] [Related]
60. Thermodynamics of RNA hairpins containing single internal mismatches. Meroueh M; Chow CS Nucleic Acids Res; 1999 Feb; 27(4):1118-25. PubMed ID: 9927746 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]