These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9843425)

  • 1. Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane.
    Schmidt MC; Rothen-Rutishauser B; Rist B; Beck-Sickinger A; Wunderli-Allenspach H; Rubas W; Sadée W; Merkle HP
    Biochemistry; 1998 Nov; 37(47):16582-90. PubMed ID: 9843425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural investigations of a human calcitonin-derived carrier peptide in a membrane environment by solid-state NMR.
    Wagner K; Beck-Sickinger AG; Huster D
    Biochemistry; 2004 Oct; 43(39):12459-68. PubMed ID: 15449935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular internalization of enhanced green fluorescent protein ligated to a human calcitonin-based carrier peptide.
    Machova Z; Mühle C; Krauss U; Tréhin R; Koch A; Merkle HP; Beck-Sickinger AG
    Chembiochem; 2002 Jul; 3(7):672-7. PubMed ID: 12325002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa.
    Lang S; Rothen-Rutishauser B; Perriard JC; Schmidt MC; Merkle HP
    Peptides; 1998; 19(3):599-607. PubMed ID: 9533651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of prion protein to lipid membranes and implications for prion conversion.
    Sanghera N; Pinheiro TJ
    J Mol Biol; 2002 Feb; 315(5):1241-56. PubMed ID: 11827491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustered negative charges on the lipid membrane surface induce beta-sheet formation of prion protein fragment 106-126.
    Miura T; Yoda M; Takaku N; Hirose T; Takeuchi H
    Biochemistry; 2007 Oct; 46(41):11589-97. PubMed ID: 17887730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the entry of two novel cell-penetrating peptides in HeLa cells: lipid raft-mediated endocytosis and endosomal escape.
    Foerg C; Ziegler U; Fernandez-Carneado J; Giralt E; Rennert R; Beck-Sickinger AG; Merkle HP
    Biochemistry; 2005 Jan; 44(1):72-81. PubMed ID: 15628847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilayer interaction and localization of cell penetrating peptides with model membranes: a comparative study of a human calcitonin (hCT)-derived peptide with pVEC and pAntp(43-58).
    Herbig ME; Fromm U; Leuenberger J; Krauss U; Beck-Sickinger AG; Merkle HP
    Biochim Biophys Acta; 2005 Jun; 1712(2):197-211. PubMed ID: 15919050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcitonin-derived carrier peptide plays a major role in the membrane localization of a peptide-cargo complex.
    Boichot S; Krauss U; Plénat T; Rennert R; Milhiet PE; Beck-Sickinger A; Le Grimellec C
    FEBS Lett; 2004 Jul; 569(1-3):346-50. PubMed ID: 15225660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fusogenic activity of hepadnavirus peptides corresponding to sequences downstream of the putative cleavage site.
    Rodríguez-Crespo I; Núñez E; Yélamos B; Gómez-Gutiérrez J; Albar JP; Peterson DL; Gavilanes F
    Virology; 1999 Aug; 261(1):133-42. PubMed ID: 10441561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane surface-associated helices promote lipid interactions and cellular uptake of human calcitonin-derived cell penetrating peptides.
    Herbig ME; Weller K; Krauss U; Beck-Sickinger AG; Merkle HP; Zerbe O
    Biophys J; 2005 Dec; 89(6):4056-66. PubMed ID: 16183886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of membrane mimicking environment on the conformation of a pore-forming (xSxG)6 peptide.
    Thundimadathil J; Roeske RW; Guo L
    Biopolymers; 2006; 84(3):317-28. PubMed ID: 16463358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation of positively charged copoly(Lys/Tyr) across phospholipid membranes.
    Liu S; Shibata A; Ueno S; Huang Y; Wang Y; Li Y
    Biochem Biophys Res Commun; 2006 Jan; 339(3):761-8. PubMed ID: 16316626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural diversity of amyloid fibril formed in human calcitonin as revealed by site-directed 13C solid-state NMR spectroscopy.
    Naito A; Kamihira M; Inoue R; Saitô H
    Magn Reson Chem; 2004 Feb; 42(2):247-57. PubMed ID: 14745805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of C-terminal loop 13 of sodium-glucose cotransporter SGLT1 with lipid bilayers.
    Raja MM; Kinne RK
    Biochemistry; 2005 Jun; 44(25):9123-9. PubMed ID: 15966736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length dependence of the coil <--> beta-sheet transition in a membrane environment.
    Meier M; Seelig J
    J Am Chem Soc; 2008 Jan; 130(3):1017-24. PubMed ID: 18163629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of human calcitonin fibrillation in aqueous urea solution by 1H NMR spectroscopy.
    Kanaori K; Nosaka AY
    Biochemistry; 1996 Oct; 35(39):12671-6. PubMed ID: 8841110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of histone H1 with phospholipids and comparison of its binding to giant liposomes and human leukemic T cells.
    Zhao H; Bose S; Tuominen EK; Kinnunen PK
    Biochemistry; 2004 Aug; 43(31):10192-202. PubMed ID: 15287747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of phospholipid membranes on bovine calcitonin peptide's secondary structure and induced neurotoxic effects.
    Wang SS; Good TA; Rymer DL
    Int J Biochem Cell Biol; 2005 Aug; 37(8):1656-69. PubMed ID: 15896672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of the human calcitonin fragment 9-32 with phospholipids: a monolayer study.
    Wagner K; Van Mau N; Boichot S; Kajava AV; Krauss U; Le Grimellec C; Beck-Sickinger A; Heitz F
    Biophys J; 2004 Jul; 87(1):386-95. PubMed ID: 15240473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.