These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 9843593)

  • 1. Citrate uptake into tonoplast vesicles from acid lime (Citrus aurantifolia) juice cells.
    Brune A; Gonzalez P; Goren R; Zehavi U; Echeverria E
    J Membr Biol; 1998 Dec; 166(3):197-203. PubMed ID: 9843593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malate and malate-channel antibodies inhibit electrogenic and ATP-dependent citrate transport across the tonoplast of citrus juice cells.
    Ratajczak R; Lüttge U; Gonzalez P; Etxeberria E
    J Plant Physiol; 2003 Nov; 160(11):1313-7. PubMed ID: 14658383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuolar citrate/H+ symporter of citrus juice cells.
    Shimada T; Nakano R; Shulaev V; Sadka A; Blumwald E
    Planta; 2006 Jul; 224(2):472-80. PubMed ID: 16440212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and energetics of a citrate-transport system of Klebsiella pneumoniae.
    Van der Rest ME; Abee T; Molenaar D; Konings WN
    Eur J Biochem; 1991 Jan; 195(1):71-7. PubMed ID: 1991478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Further characteristics of the ATP-stimulated uptake of calcium into chromaffin granules.
    Burger A; Niedermaier W; Langer R; Bode U
    J Neurochem; 1984 Sep; 43(3):806-15. PubMed ID: 6235324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniport of anionic citrate and proton consumption in citrate metabolism generates a proton motive force in Leuconostoc oenos.
    Ramos A; Poolman B; Santos H; Lolkema JS; Konings WN
    J Bacteriol; 1994 Aug; 176(16):4899-905. PubMed ID: 8051003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum.
    Ingle RA; Fricker MD; Smith JA
    Plant Biol (Stuttg); 2008 Nov; 10(6):746-53. PubMed ID: 18950432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The electrochemical proton gradient and its influence on citrate uptake in tonoplast vesicles of Hevea brasiliensis.
    Marin B; Smith JA; Lüttge U
    Planta; 1981 Dec; 153(5):486-93. PubMed ID: 24275823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphate uptake across the tonoplast of intact vacuoles isolated from suspension-cultured cells of Catharanthus roseus (L.) G. Don.
    Massonneau A; Martinoia E; Dietz KJ; Mimura T
    Planta; 2000 Aug; 211(3):390-5. PubMed ID: 10987558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of the vacuolar H+-ATPase by adenylates as basis for the transient CO2-dependent acidification of the leaf vacuole upon illumination.
    Dietz KJ; Heber U; Mimura T
    Biochim Biophys Acta; 1998 Aug; 1373(1):87-92. PubMed ID: 9733929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citrate transport in Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Biol Chem Hoppe Seyler; 1986 Aug; 367(8):813-23. PubMed ID: 2945569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active transport of alanine by thermostable membrane vesicles isolated from a thermophilic bacterium.
    Hirata H; Sone N; Yoshida M; Kagawa Y
    J Biochem; 1976 Jun; 79(6):1157-66. PubMed ID: 8439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of the red beet tonoplast H(+)-ATPase by a pyrophosphate-generated proton electrochemical gradient.
    Schmidt AL; Briskin DP
    Arch Biochem Biophys; 1993 Nov; 306(2):407-14. PubMed ID: 8215443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The control by delta mu H+ of the tonoplast-bound H+-translocating adenosine triphosphatase from rubber-tree (Hevea brasiliensis) latex.
    Marin BP
    Biochem J; 1985 Jul; 229(2):459-67. PubMed ID: 2994636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP dependence of anion uptake by isolated vacuoles: requirement for excess Mg2+.
    Dietz KJ; Lang M; Schönrock M; Zink C
    Biochim Biophys Acta; 1990 May; 1024(2):318-22. PubMed ID: 2141282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of the ATPase of sugar-cane vacuoles in energization of the tonoplast.
    Thom M; Komor E
    Eur J Biochem; 1984 Jan; 138(1):93-9. PubMed ID: 6319133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide identification and transcript analysis of vacuolar-ATPase genes in citrus reveal their possible involvement in citrate accumulation.
    Shi CY; Hussain SB; Guo LX; Yang H; Ning DY; Liu YZ
    Phytochemistry; 2018 Nov; 155():147-154. PubMed ID: 30121429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The protonmotive potential difference across the vacuo-lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase.
    Marin B; Marin-Lanza M; Komor E
    Biochem J; 1981 Aug; 198(2):365-72. PubMed ID: 6275844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of vacuolar malate-transport capacity in crassulacean acid metabolism and nitrate nutrition. Higher malate-transport capacity in ice plant after crassulacean acid metabolism-induction and in tobacco under nitrate nutrition.
    Lüttge U; Pfeifer T; Fischer-Schliebs E; Ratajczak R
    Plant Physiol; 2000 Nov; 124(3):1335-48. PubMed ID: 11080309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further Evidence for Stachyose and Sucrose/H+ Antiporters on the Tonoplast of Japanese Artichoke (Stachys sieboldii) Tubers.
    Greutert H; Keller F
    Plant Physiol; 1993 Apr; 101(4):1317-1322. PubMed ID: 12231787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.