These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 9843669)

  • 21. Dynamic measurement of myosin light-chain-domain tilt and twist in muscle contraction.
    Corrie JE; Brandmeier BD; Ferguson RE; Trentham DR; Kendrick-Jones J; Hopkins SC; van der Heide UA; Goldman YE; Sabido-David C; Dale RE; Criddle S; Irving M
    Nature; 1999 Jul; 400(6743):425-30. PubMed ID: 10440371
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of F-actin on the relay helix position of myosin II, as revealed by tryptophan fluorescence, and its implications for mechanochemical coupling.
    Conibear PB; Málnási-Csizmadia A; Bagshaw CR
    Biochemistry; 2004 Dec; 43(49):15404-17. PubMed ID: 15581352
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Subunit interactions within an expressed regulatory domain of chicken skeletal myosin. Location of the NH2 terminus of the regulatory light chain by fluorescence resonance energy transfer.
    Saraswat LD; Lowey S
    J Biol Chem; 1998 Jul; 273(28):17671-9. PubMed ID: 9651364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of electrostatic potential around specific locations on the surface of actin by diffusion-enhanced fluorescence resonance energy transfer.
    Yamamoto T; Nakayama S; Kobayashi N; Munekata E; Ando T
    J Mol Biol; 1994 Sep; 241(5):714-31. PubMed ID: 8071995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The distances separating Tyr-69 from the high-affinity nucleotide and metal binding sites in actin.
    Barden JA; Miki M
    Biochem Int; 1986 Feb; 12(2):321-9. PubMed ID: 3964288
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coordination of the two heads of myosin during muscle contraction.
    Lidke DS; Thomas DD
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14801-6. PubMed ID: 12417762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intradomain distances in the regulatory domain of the myosin head in prepower and postpower stroke states: fluorescence energy transfer.
    Palm T; Sale K; Brown L; Li H; Hambly B; Fajer PG
    Biochemistry; 1999 Oct; 38(40):13026-34. PubMed ID: 10529172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence energy transfer between Tyr 69 and Cys 374 in actin.
    Barden JA
    Biochem Int; 1985 Oct; 11(4):583-9. PubMed ID: 4084319
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single myosin cross-bridge orientation in cardiac papillary muscle detects lever-arm shear strain in transduction.
    Burghardt TP; Josephson MP; Ajtai K
    Biochemistry; 2011 Sep; 50(36):7809-21. PubMed ID: 21819137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo myosin step-size from zebrafish skeletal muscle.
    Burghardt TP; Ajtai K; Sun X; Takubo N; Wang Y
    Open Biol; 2016 May; 6(5):. PubMed ID: 27249818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Intermolecular Interactions of Myosin Subfragment 1 Induced by the N-Terminal Extension of Essential Light Chain 1.
    Logvinova DS; Nikolaeva OP; Levitsky DI
    Biochemistry (Mosc); 2017 Feb; 82(2):213-223. PubMed ID: 28320305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural aspects of skeletal muscle F-actin as studied by tryptic digestion: evidence for a second nucleotide interacting site.
    Hozumi T
    J Biochem; 1988 Aug; 104(2):285-8. PubMed ID: 2972700
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proximity relationships between engineered cysteine residues in chicken skeletal myosin regulatory light chain. A resonance energy transfer study.
    Wolff-Long VL; Tao T; Lowey S
    J Biol Chem; 1995 Dec; 270(52):31111-8. PubMed ID: 8537372
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamics of the upper 50-kDa domain of myosin V examined with fluorescence resonance energy transfer.
    Sun M; Oakes JL; Ananthanarayanan SK; Hawley KH; Tsien RY; Adams SR; Yengo CM
    J Biol Chem; 2006 Mar; 281(9):5711-7. PubMed ID: 16377637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distance between nucleotide site and cysteine-373 of G-actin by resonance energy transfer measurements.
    Cheung HC; Liu BM
    J Muscle Res Cell Motil; 1984 Feb; 5(1):65-80. PubMed ID: 6715528
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ molecular association of dystrophin with actin revealed by sensitized emission immuno-resonance energy transfer.
    Root DD
    Proc Natl Acad Sci U S A; 1997 May; 94(11):5685-90. PubMed ID: 9159133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence resonance energy transfer between the nucleotide binding site and Cys-10 in G-actin and F-actin.
    Miki M; Barden JA; dos Remedios CG
    Biochim Biophys Acta; 1986 Jul; 872(1-2):76-82. PubMed ID: 3089284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluorescence resonance energy transfer between sites in G-actin. The spatial relationship between Cys-10, Tyr-69, Cys-374, the high-affinity metal and the nucleotide.
    Barden JA; dos Remedios CG
    Eur J Biochem; 1987 Oct; 168(1):103-9. PubMed ID: 3665911
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Asymmetric myosin binding to the thin filament as revealed by a fluorescent nanocircuit.
    Coffee Castro-Zena PG; Root DD
    Arch Biochem Biophys; 2013 Jul; 535(1):14-21. PubMed ID: 23274408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isolation and fluorescence spectrum of cardiac myosin from pig heart.
    Liu Y; Li B; Sun X; Lin A
    Protein J; 2009 May; 28(3-4):169-74. PubMed ID: 19475499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.