BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 9843706)

  • 1. A water channel of the nematode C. elegans and its implications for channel selectivity of MIP proteins.
    Kuwahara M; Ishibashi K; Gu Y; Terada Y; Kohara Y; Marumo F; Sasaki S
    Am J Physiol; 1998 Dec; 275(6):C1459-64. PubMed ID: 9843706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional characterization of a water channel of the nematode Caenorhabditis elegans.
    Kuwahara M; Asai T; Sato K; Shinbo I; Terada Y; Marumo F; Sasaki S
    Biochim Biophys Acta; 2000 Dec; 1517(1):107-12. PubMed ID: 11118622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water and glycerol permeabilities of aquaporins 1-5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes.
    Yang B; Verkman AS
    J Biol Chem; 1997 Jun; 272(26):16140-6. PubMed ID: 9195910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells.
    Ishibashi K; Sasaki S; Fushimi K; Uchida S; Kuwahara M; Saito H; Furukawa T; Nakajima K; Yamaguchi Y; Gojobori T
    Proc Natl Acad Sci U S A; 1994 Jul; 91(14):6269-73. PubMed ID: 7517548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional analysis of the aquaporin gene family in Caenorhabditis elegans.
    Huang CG; Lamitina T; Agre P; Strange K
    Am J Physiol Cell Physiol; 2007 May; 292(5):C1867-73. PubMed ID: 17229810
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity of the renal collecting duct water channel aquaporin-3.
    Echevarría M; Windhager EE; Frindt G
    J Biol Chem; 1996 Oct; 271(41):25079-82. PubMed ID: 8810261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmembrane helix 5 is critical for the high water permeability of aquaporin.
    Kuwahara M; Shinbo I; Sato K; Terada Y; Marumo F; Sasaki S
    Biochemistry; 1999 Dec; 38(49):16340-6. PubMed ID: 10587459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water channel properties of major intrinsic protein of lens.
    Mulders SM; Preston GM; Deen PM; Guggino WB; van Os CH; Agre P
    J Biol Chem; 1995 Apr; 270(15):9010-16. PubMed ID: 7536742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligomerization state of MIP proteins expressed in Xenopus oocytes as revealed by freeze-fracture electron-microscopy analysis.
    Bron P; Lagrée V; Froger A; Rolland JP; Hubert JF; Delamarche C; Deschamps S; Pellerin I; Thomas D; Haase W
    J Struct Biol; 1999 Dec; 128(3):287-96. PubMed ID: 10633068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of aquaporin water permeability in the lens.
    Varadaraj K; Kumari S; Shiels A; Mathias RT
    Invest Ophthalmol Vis Sci; 2005 Apr; 46(4):1393-402. PubMed ID: 15790907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional characterization of the Escherichia coli glycerol facilitator, GlpF, in Xenopus oocytes.
    Maurel C; Reizer J; Schroeder JI; Chrispeels MJ; Saier MH
    J Biol Chem; 1994 Apr; 269(16):11869-72. PubMed ID: 7512955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury-sensitive residues and pore site in AQP3 water channel.
    Kuwahara M; Gu Y; Ishibashi K; Marumo F; Sasaki S
    Biochemistry; 1997 Nov; 36(46):13973-8. PubMed ID: 9369468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The vacuolar membrane protein gamma-TIP creates water specific channels in Xenopus oocytes.
    Maurel C; Reizer J; Schroeder JI; Chrispeels MJ
    EMBO J; 1993 Jun; 12(6):2241-7. PubMed ID: 8508761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycerol permeability of mutant aquaporin 1 and other AQP-MIP proteins: inhibition studies.
    Abrami L; Berthonaud V; Deen PM; Rousselet G; Tacnet F; Ripoche P
    Pflugers Arch; 1996 Jan; 431(3):408-14. PubMed ID: 8584435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and characterization of AqpZ, a water channel from Escherichia coli.
    Calamita G; Bishai WR; Preston GM; Guggino WB; Agre P
    J Biol Chem; 1995 Dec; 270(49):29063-6. PubMed ID: 7493926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning, heterologous expression, and characterization of three aquaglyceroporins from Trypanosoma brucei.
    Uzcategui NL; Szallies A; Pavlovic-Djuranovic S; Palmada M; Figarella K; Boehmer C; Lang F; Beitz E; Duszenko M
    J Biol Chem; 2004 Oct; 279(41):42669-76. PubMed ID: 15294911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and functional expression of an MIP (AQP0) homolog from killifish (Fundulus heteroclitus) lens.
    Virkki LV; Cooper GJ; Boron WF
    Am J Physiol Regul Integr Comp Physiol; 2001 Dec; 281(6):R1994-2003. PubMed ID: 11705786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional analysis of novel aquaporins from Fasciola gigantica.
    Geadkaew A; von Bülow J; Beitz E; Grams SV; Viyanant V; Grams R
    Mol Biochem Parasitol; 2011 Feb; 175(2):144-53. PubMed ID: 21073907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aquaporin Nt-TIPa can account for the high permeability of tobacco cell vacuolar membrane to small neutral solutes.
    Gerbeau P; Güçlü J; Ripoche P; Maurel C
    Plant J; 1999 Jun; 18(6):577-87. PubMed ID: 10417709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin.
    Le Cahérec F; Bron P; Verbavatz JM; Garret A; Morel G; Cavalier A; Bonnec G; Thomas D; Gouranton J; Hubert JF
    J Cell Sci; 1996 Jun; 109 ( Pt 6)():1285-95. PubMed ID: 8799818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.