These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 9843719)
1. Endogenous expression of the renal high-affinity H+-peptide cotransporter in LLC-PK1 cells. Wenzel U; Diehl D; Herget M; Daniel H Am J Physiol; 1998 Dec; 275(6):C1573-9. PubMed ID: 9843719 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the high-affinity H+/peptide cotransporter in renal LLC-PK1 cells. Wenzel U; Diehl D; Herget M; Kuntz S; Daniel H J Cell Physiol; 1999 Mar; 178(3):341-8. PubMed ID: 9989780 [TBL] [Abstract][Full Text] [Related]
3. Identification of a renal cell line that constitutively expresses the kidney-specific high-affinity H+/peptide cotransporter. Brandsch M; Brandsch C; Prasad PD; Ganapathy V; Hopfer U; Leibach FH FASEB J; 1995 Nov; 9(14):1489-96. PubMed ID: 7589991 [TBL] [Abstract][Full Text] [Related]
4. Functional expression of novel peptide transporter in renal basolateral membranes. Terada T; Sawada K; Ito T; Saito H; Hashimoto Y; Inui K Am J Physiol Renal Physiol; 2000 Nov; 279(5):F851-7. PubMed ID: 11053045 [TBL] [Abstract][Full Text] [Related]
5. Renal assimilation of short chain peptides: visualization of tubular peptide uptake. Groneberg DA; Döring F; Nickolaus M; Daniel H; Fischer A Pharm Res; 2002 Aug; 19(8):1209-14. PubMed ID: 12240948 [TBL] [Abstract][Full Text] [Related]
6. Recognition of beta-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Terada T; Saito H; Mukai M; Inui K Am J Physiol; 1997 Nov; 273(5):F706-11. PubMed ID: 9374833 [TBL] [Abstract][Full Text] [Related]
7. A model for the kinetic mechanism of sodium-coupled L-alanine transport in LLC-PK1 cells. Wilson JJ; Randles J; Kimmich GA Am J Physiol; 1996 Jan; 270(1 Pt 1):C49-56. PubMed ID: 8772429 [TBL] [Abstract][Full Text] [Related]
8. Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2. Terada T; Sawada K; Irie M; Saito H; Hashimoto Y; Inui K Pflugers Arch; 2000 Sep; 440(5):679-84. PubMed ID: 11007306 [TBL] [Abstract][Full Text] [Related]
9. Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1. Steel A; Nussberger S; Romero MF; Boron WF; Boyd CA; Hediger MA J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):563-9. PubMed ID: 9051570 [TBL] [Abstract][Full Text] [Related]
10. Functional expression of the peptide transporter PEPT2 in the mammalian enteric nervous system. Rühl A; Hoppe S; Frey I; Daniel H; Schemann M J Comp Neurol; 2005 Sep; 490(1):1-11. PubMed ID: 16041713 [TBL] [Abstract][Full Text] [Related]
11. Intestinal peptide transport: ex vivo uptake studies and localization of peptide carrier PEPT1. Groneberg DA; Döring F; Eynott PR; Fischer A; Daniel H Am J Physiol Gastrointest Liver Physiol; 2001 Sep; 281(3):G697-704. PubMed ID: 11518682 [TBL] [Abstract][Full Text] [Related]
12. Expression of parathyroid hormone receptors in MDCK and LLC-PK1 cells. Hayes G; Forgo J; Bringhurst FR; Segre G; Murer H Pflugers Arch; 1995 Sep; 430(5):636-44. PubMed ID: 7478914 [TBL] [Abstract][Full Text] [Related]
13. Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2. Chen XZ; Zhu T; Smith DE; Hediger MA J Biol Chem; 1999 Jan; 274(5):2773-9. PubMed ID: 9915809 [TBL] [Abstract][Full Text] [Related]
14. Involvement of recognition and interaction of carnitine transporter in the decrease of L-carnitine concentration induced by pivalic acid and valproic acid. Okamura N; Ohnishi S; Shimaoka H; Norikura R; Hasegawa H Pharm Res; 2006 Aug; 23(8):1729-35. PubMed ID: 16826461 [TBL] [Abstract][Full Text] [Related]
15. Expression of proximal tubular Na-Pi and Na-SO4 cotransporters in MDCK and LLC-PK1 cells by transfection. Quabius ES; Murer H; Biber J Am J Physiol; 1996 Jan; 270(1 Pt 2):F220-8. PubMed ID: 8769843 [TBL] [Abstract][Full Text] [Related]
16. High- and low-affinity transport of L-leucine and L-DOPA by the hetero amino acid exchangers LAT1 and LAT2 in LLC-PK1 renal cells. Soares-da-Silva P; Serrão MP Am J Physiol Renal Physiol; 2004 Aug; 287(2):F252-61. PubMed ID: 15271688 [TBL] [Abstract][Full Text] [Related]
17. Effects of glibenclamide on glycylsarcosine transport by the rat peptide transporters PEPT1 and PEPT2. Sawada K; Terada T; Saito H; Hashimoto Y; Inui K Br J Pharmacol; 1999 Nov; 128(6):1159-64. PubMed ID: 10578127 [TBL] [Abstract][Full Text] [Related]
18. Preferential recognition of zwitterionic dipeptides as transportable substrates by the high-affinity peptide transporter PEPT2. Fei YJ; Nara E; Liu JC; Boyd CA; Ganapathy V; Leibach FH Biochim Biophys Acta; 1999 May; 1418(2):344-51. PubMed ID: 10320685 [TBL] [Abstract][Full Text] [Related]
19. Na(+)-coupled alanine transport in LLC-PK1 cells. Kimmich GA; Randles J; Wilson J Am J Physiol; 1994 Oct; 267(4 Pt 1):C1119-29. PubMed ID: 7943275 [TBL] [Abstract][Full Text] [Related]
20. Cloning of the pig PEPT2 (pPEPT2) and characterization of the effects of epidermal growth factor (EGF) on pPEPT2-mediated peptide uptake in the renal porcine cell line LLC-PK1. Søndergaard HB; Bravo SA; Nielsen CU; Frokjaer S; Brodin B Eur J Pharm Sci; 2008 Apr; 33(4-5):332-42. PubMed ID: 18295462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]