BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9843727)

  • 1. Colocalization of glycolytic enzyme activity and KATP channels in basolateral membrane of Necturus enterocytes.
    Dubinsky WP; Mayorga-Wark O; Schultz SG
    Am J Physiol; 1998 Dec; 275(6):C1653-9. PubMed ID: 9843727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of a KATP channel from basolateral membranes of Necturus enterocytes.
    Mayorga-Wark O; Dubinsky WP; Schultz SG
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C464-71. PubMed ID: 7653528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-talk between ATP-regulated K+ channels and Na+ transport via cellular metabolism in frog skin principal cells.
    Urbach V; Van Kerkhove E; Maguire D; Harvey BJ
    J Physiol; 1996 Feb; 491 ( Pt 1)(Pt 1):99-109. PubMed ID: 9011625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pump-leak parallelism in sodium-absorbing epithelia: the role of ATP-regulated potassium channels.
    Schultz SG
    J Exp Zool; 1997 Dec; 279(5):476-83. PubMed ID: 9392869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium channels in basolateral membrane vesicles from necturus enterocytes: stretch and ATP sensitivity.
    Dubinsky WP; Mayorga-Wark O; Schultz SG
    Am J Physiol Cell Physiol; 2000 Sep; 279(3):C634-8. PubMed ID: 10942713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reconstitution of an inwardly rectifying potassium channel from the basolateral membranes of Necturus enterocytes into planar lipid bilayers.
    Costantin J; Alcalen S; de Souza Otero A; Dubinsky WP; Schultz SG
    Proc Natl Acad Sci U S A; 1989 Jul; 86(13):5212-6. PubMed ID: 2740353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunoisolation of a K+ channel from basolateral membranes of Necturus enterocytes.
    Dubinsky WP; Mayorga-Wark O; Garretson LT; Schultz SG
    Am J Physiol; 1993 Aug; 265(2 Pt 1):C548-55. PubMed ID: 8368281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K
    Corradi J; Thompson B; Fletcher PA; Bertram R; Sherman AS; Satin LS
    J Physiol; 2023 Dec; 601(24):5655-5667. PubMed ID: 37983196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypertrophy decreases cardiac KATP channel responsiveness to exogenous and locally generated (glycolytic) ATP.
    Yuan F; Brandt NR; Pinto JM; Wasserlauf BJ; Myerburg RJ; Bassett AL
    J Mol Cell Cardiol; 1997 Oct; 29(10):2837-48. PubMed ID: 9344777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of a Shaker K+ channel peptide and trypsin on a K+ channel in Necturus enterocytes.
    Mayorga-Wark O; Costantin J; Dubinsky WP; Schultz SG
    Am J Physiol; 1993 Aug; 265(2 Pt 1):C541-7. PubMed ID: 8368280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of mitochondrial KATP channel by redox agents.
    Grigoriev SM; Skarga YY; Mironova GD; Marinov BS
    Biochim Biophys Acta; 1999 Jan; 1410(1):91-6. PubMed ID: 10076019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A peptide from the Drosophila Shaker K+ channel inhibits a voltage-gated K+ channel in basolateral membranes of Necturus enterocytes.
    Dubinsky WP; Mayorga-Wark O; Schultz SG
    Proc Natl Acad Sci U S A; 1992 Mar; 89(5):1770-4. PubMed ID: 1542670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversal of glibenclamide and voltage block of an epithelial KATP channel.
    Mayorga-Wark O; Dubinsky WP; Schultz SG
    Am J Physiol; 1996 Oct; 271(4 Pt 1):C1122-30. PubMed ID: 8897818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium absorption, volume control and potassium channels: in tribute to a great biologist.
    Schultz SG; Dubinsky WP
    J Membr Biol; 2001 Dec; 184(3):255-61. PubMed ID: 11891550
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-cell deletion of the PKm1 and PKm2 isoforms of pyruvate kinase in mice reveals their essential role as nutrient sensors for the K
    Foster HR; Ho T; Potapenko E; Sdao SM; Huang SM; Lewandowski SL; VanDeusen HR; Davidson SM; Cardone RL; Prentki M; Kibbey RG; Merrins MJ
    Elife; 2022 Aug; 11():. PubMed ID: 35997256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose stimulates glucagon release in single rat alpha-cells by mechanisms that mirror the stimulus-secretion coupling in beta-cells.
    Olsen HL; Theander S; Bokvist K; Buschard K; Wollheim CB; Gromada J
    Endocrinology; 2005 Nov; 146(11):4861-70. PubMed ID: 16081632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac ATP-sensitive K+ channels: regulation by intracellular nucleotides and K+ channel-opening drugs.
    Terzic A; Jahangir A; Kurachi Y
    Am J Physiol; 1995 Sep; 269(3 Pt 1):C525-45. PubMed ID: 7573382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP-sensitive K+ channels from aortic smooth muscle incorporated into planar lipid bilayers.
    Kovacs RJ; Nelson MT
    Am J Physiol; 1991 Aug; 261(2 Pt 2):H604-9. PubMed ID: 1715132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies with GIP/Ins cells indicate secretion by gut K cells is KATP channel independent.
    Wang SY; Chi MM; Li L; Moley KH; Wice BM
    Am J Physiol Endocrinol Metab; 2003 May; 284(5):E988-1000. PubMed ID: 12676650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of anoxic preconditioning on ATP-sensitive potassium channels in guinea-pig ventricular myocytes.
    Zhu Z; Li YL; Li DP; He RR
    Pflugers Arch; 2000 Apr; 439(6):808-13. PubMed ID: 10784356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.