These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 9843753)
1. Isolation of human skeletal muscle myosin heavy chain and actin for measurement of fractional synthesis rates. Hasten DL; Morris GS; Ramanadham S; Yarasheski KE Am J Physiol; 1998 Dec; 275(6):E1092-9. PubMed ID: 9843753 [TBL] [Abstract][Full Text] [Related]
2. Resistance exercise acutely increases MHC and mixed muscle protein synthesis rates in 78-84 and 23-32 yr olds. Hasten DL; Pak-Loduca J; Obert KA; Yarasheski KE Am J Physiol Endocrinol Metab; 2000 Apr; 278(4):E620-6. PubMed ID: 10751194 [TBL] [Abstract][Full Text] [Related]
3. Skeletal muscle myosin heavy chain synthesis in type 1 diabetes. Charlton MR; Balagopal P; Nair KS Diabetes; 1997 Aug; 46(8):1336-40. PubMed ID: 9231659 [TBL] [Abstract][Full Text] [Related]
5. Effects of aging on in vivo synthesis of skeletal muscle myosin heavy-chain and sarcoplasmic protein in humans. Balagopal P; Rooyackers OE; Adey DB; Ades PA; Nair KS Am J Physiol; 1997 Oct; 273(4):E790-800. PubMed ID: 9357810 [TBL] [Abstract][Full Text] [Related]
6. Measurement of very low stable isotope enrichments by gas chromatography/mass spectrometry: application to measurement of muscle protein synthesis. Patterson BW; Zhang XJ; Chen Y; Klein S; Wolfe RR Metabolism; 1997 Aug; 46(8):943-8. PubMed ID: 9258279 [TBL] [Abstract][Full Text] [Related]
7. Determination of low isotopic enrichment of L-[1-13C]valine by gas chromatography/combustion/isotope ratio mass spectrometry: a robust method for measuring protein fractional synthetic rates in vivo. Reijngoud DJ; Hellstern G; Elzinga H; de Sain-van der Velden MG; Okken A; Stellaard F J Mass Spectrom; 1998 Jul; 33(7):621-6. PubMed ID: 9692246 [TBL] [Abstract][Full Text] [Related]
8. Mass spectrometric methods for determination of [13C]Leucine enrichment in human muscle protein. Balagopal P; Ford GC; Ebenstein DB; Nadeau DA; Nair KS Anal Biochem; 1996 Jul; 239(1):77-85. PubMed ID: 8660628 [TBL] [Abstract][Full Text] [Related]
9. Measurement of muscle protein fractional synthetic rate by capillary gas chromatography/combustion isotope ratio mass spectrometry. Yarasheski KE; Smith K; Rennie MJ; Bier DM Biol Mass Spectrom; 1992 Oct; 21(10):486-90. PubMed ID: 1420371 [TBL] [Abstract][Full Text] [Related]
10. Isolation of myosin heavy chain from small skeletal muscle samples by preparative continuous elution gel electrophoresis: application to measurement of synthesis rate in human and animal tissue. Balagopal P; Nair KS; Stirewalt WS Anal Biochem; 1994 Aug; 221(1):72-7. PubMed ID: 7985807 [TBL] [Abstract][Full Text] [Related]
11. A new method to study in vivo protein synthesis in slow- and fast-twitch muscle fibers and initial measurements in humans. Dickinson JM; Lee JD; Sullivan BE; Harber MP; Trappe SW; Trappe TA J Appl Physiol (1985); 2010 May; 108(5):1410-6. PubMed ID: 20203068 [TBL] [Abstract][Full Text] [Related]
12. Centrifugation-based isolation of myosin for measurement of its synthesis rate in small muscle samples. Zangarelli A; Walrand S; Guillet C; Gachon P; Rousset P; Giraudet C; Picard B; Boirie Y Anal Biochem; 2004 Apr; 327(1):55-60. PubMed ID: 15033510 [TBL] [Abstract][Full Text] [Related]
13. Effect of age on skeletal muscle myofibrillar mRNA abundance: relationship to myosin heavy chain protein synthesis rate. Toth MJ; Tchernof A Exp Gerontol; 2006 Nov; 41(11):1195-200. PubMed ID: 17029664 [TBL] [Abstract][Full Text] [Related]
14. A rapid electrophoretic method for separating rabbit skeletal muscle myosin heavy chains at high resolution. Kubis HP; Gros G Electrophoresis; 1997 Jan; 18(1):64-6. PubMed ID: 9059823 [TBL] [Abstract][Full Text] [Related]
15. Effect of chronic excess of tumour necrosis factor-alpha on contractile proteins in rat skeletal muscle. Cheema IR; Hermann C; Postell S; Barnes P Cytobios; 2000; 103(404):169-76. PubMed ID: 11086712 [TBL] [Abstract][Full Text] [Related]
16. Enhanced protein electrophoresis technique for separating human skeletal muscle myosin heavy chain isoforms. Bamman MM; Clarke MS; Talmadge RJ; Feeback DL Electrophoresis; 1999 Mar; 20(3):466-8. PubMed ID: 10217154 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial and sarcoplasmic proteins, but not myosin heavy chain, are sensitive to leucine supplementation in old rat skeletal muscle. Guillet C; Zangarelli A; Mishellany A; Rousset P; Sornet C; Dardevet D; Boirie Y Exp Gerontol; 2004 May; 39(5):745-51. PubMed ID: 15130669 [TBL] [Abstract][Full Text] [Related]
18. Changes in skeletal muscle protein metabolism and myosin heavy chain isoform messenger ribonucleic acid abundance after treatment of hyperthyroidism. Brennan MD; Coenen-Schimke JM; Bigelow ML; Nair KS J Clin Endocrinol Metab; 2006 Nov; 91(11):4650-6. PubMed ID: 16940450 [TBL] [Abstract][Full Text] [Related]
19. Myosin and actin content of human skeletal muscle fibers following 35 days bed rest. Borina E; Pellegrino MA; D'Antona G; Bottinelli R Scand J Med Sci Sports; 2010 Feb; 20(1):65-73. PubMed ID: 19883388 [TBL] [Abstract][Full Text] [Related]
20. Alterations in skeletal muscle gene expression in the rat with chronic congestive heart failure. Simonini A; Massie BM; Long CS; Qi M; Samarel AM J Mol Cell Cardiol; 1996 Aug; 28(8):1683-91. PubMed ID: 8877778 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]