BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9843816)

  • 1. Exercise training increases L-type calcium current density in coronary smooth muscle.
    Bowles DK; Hu Q; Laughlin MH; Sturek M
    Am J Physiol; 1998 Dec; 275(6):H2159-69. PubMed ID: 9843816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterogeneity of L-type calcium current density in coronary smooth muscle.
    Bowles DK; Hu Q; Laughlin MH; Sturek M
    Am J Physiol; 1997 Oct; 273(4):H2083-9. PubMed ID: 9362280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gender influences coronary L-type Ca(2+) current and adaptation to exercise training in miniature swine.
    Bowles DK
    J Appl Physiol (1985); 2001 Dec; 91(6):2503-10. PubMed ID: 11717211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced L-type Ca2+ channel current density in coronary smooth muscle of exercise-trained pigs is compensated to limit myoplasmic free Ca2+ accumulation.
    Heaps CL; Bowles DK; Sturek M; Laughlin MH; Parker JL
    J Physiol; 2000 Nov; 528(Pt 3):435-45. PubMed ID: 11060122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training increases K+-channel contribution to regulation of coronary arterial tone.
    Bowles DK; Laughlin MH; Sturek M
    J Appl Physiol (1985); 1998 Apr; 84(4):1225-33. PubMed ID: 9516188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alterations in PKC signaling underlie enhanced myogenic tone in exercise-trained porcine coronary resistance arteries.
    Korzick DH; Laughlin MH; Bowles DK
    J Appl Physiol (1985); 2004 Apr; 96(4):1425-32. PubMed ID: 14672961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of exercise training and hypercholesterolemia on adenosine activation of voltage-dependent K+ channels in coronary arterioles.
    Heaps CL; Jeffery EC; Laine GA; Price EM; Bowles DK
    J Appl Physiol (1985); 2008 Dec; 105(6):1761-71. PubMed ID: 18832757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vasoconstrictor responses of coronary resistance arteries in exercise-trained pigs.
    Laughlin MH; Muller JM
    J Appl Physiol (1985); 1998 Mar; 84(3):884-9. PubMed ID: 9480947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of exercise training on responses of peripheral and visceral arteries in swine.
    McAllister RM; Kimani JK; Webster JL; Parker JL; Laughlin MH
    J Appl Physiol (1985); 1996 Jan; 80(1):216-25. PubMed ID: 8847306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise.
    Mokelke EA; Hu Q; Song M; Toro L; Reddy HK; Sturek M
    J Appl Physiol (1985); 2003 Sep; 95(3):1179-93. PubMed ID: 12777409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise training and vascular cell phenotype in a swine model of familial hypercholesterolaemia: conduit arteries and veins.
    Simmons GH; Padilla J; Jenkins NT; Laughlin MH
    Exp Physiol; 2014 Feb; 99(2):454-65. PubMed ID: 24213857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise training attenuates coronary smooth muscle phenotypic modulation and nuclear Ca2+ signaling.
    Wamhoff BR; Bowles DK; Dietz NJ; Hu Q; Sturek M
    Am J Physiol Heart Circ Physiol; 2002 Dec; 283(6):H2397-410. PubMed ID: 12388302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Altered calcium sensitivity contributes to enhanced contractility of collateral-dependent coronary arteries.
    Heaps CL; Parker JL; Sturek M; Bowles DK
    J Appl Physiol (1985); 2004 Jul; 97(1):310-6. PubMed ID: 14978011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exercise training increases basal tone in arterioles distal to chronic coronary occlusion.
    Heaps CL; Mattox ML; Kelly KA; Meininger CJ; Parker JL
    Am J Physiol Heart Circ Physiol; 2006 Mar; 290(3):H1128-35. PubMed ID: 16243909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of sex, high-fat diet, and exercise training on potassium currents of swine coronary smooth muscle.
    Yang Y; Jones AW; Thomas TR; Rubin LJ
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1553-63. PubMed ID: 17526655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term training enhances endothelium-dependent dilation of coronary arteries, not arterioles.
    Laughlin MH; Rubin LJ; Rush JW; Price EM; Schrage WG; Woodman CR
    J Appl Physiol (1985); 2003 Jan; 94(1):234-44. PubMed ID: 12391095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise training alters myogenic responses in porcine coronary resistance arteries.
    Muller JM; Myers PR; Laughlin MH
    J Appl Physiol (1985); 1993 Dec; 75(6):2677-82. PubMed ID: 8125889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypercholesterolemia inhibits L-type calcium current in coronary macro-, not microcirculation.
    Bowles DK; Heaps CL; Turk JR; Maddali KK; Price EM
    J Appl Physiol (1985); 2004 Jun; 96(6):2240-8. PubMed ID: 14752123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise training prevents Ca2+ dysregulation in coronary smooth muscle from diabetic dyslipidemic yucatan swine.
    Witczak CA; Wamhoff BR; Sturek M
    J Appl Physiol (1985); 2006 Sep; 101(3):752-62. PubMed ID: 16763107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of exercise training on regulation of tone in coronary arteries and arterioles.
    Parker JL; Oltman CL; Muller JM; Myers PR; Adams HR; Laughlin MH
    Med Sci Sports Exerc; 1994 Oct; 26(10):1252-61. PubMed ID: 7799768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.