BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 9843837)

  • 1. A maturational shift in pulmonary K+ channels, from Ca2+ sensitive to voltage dependent.
    Reeve HL; Weir EK; Archer SL; Cornfield DN
    Am J Physiol; 1998 Dec; 275(6):L1019-25. PubMed ID: 9843837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of normoxia and hypoxia on K(+) current and resting membrane potential of fetal rabbit pulmonary artery smooth muscle.
    Hong Z; Weir EK; Varghese A; Olschewski A
    Physiol Res; 2005; 54(2):175-84. PubMed ID: 15544429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes.
    Yuan XJ
    Circ Res; 1995 Aug; 77(2):370-8. PubMed ID: 7542182
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Ca2+]i inhibition of K+ channels in canine pulmonary artery. Novel mechanism for hypoxia-induced membrane depolarization.
    Post JM; Gelband CH; Hume JR
    Circ Res; 1995 Jul; 77(1):131-9. PubMed ID: 7788871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Electrophysiological study on rat conduit pulmonary artery smooth muscle cells under normoxia and acute hypoxia].
    Hu Y; Zou F; Cai CQ; Wu HY; Yun HX; Chen YT; Jin GE; Ge RL
    Sheng Li Xue Bao; 2006 Oct; 58(5):477-82. PubMed ID: 17041733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel.
    Cornfield DN; Reeve HL; Tolarova S; Weir EK; Archer S
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8089-94. PubMed ID: 8755608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes.
    Archer SL; Souil E; Dinh-Xuan AT; Schremmer B; Mercier JC; El Yaagoubi A; Nguyen-Huu L; Reeve HL; Hampl V
    J Clin Invest; 1998 Jun; 101(11):2319-30. PubMed ID: 9616203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells.
    Archer SL; Wu XC; Thébaud B; Nsair A; Bonnet S; Tyrrell B; McMurtry MS; Hashimoto K; Harry G; Michelakis ED
    Circ Res; 2004 Aug; 95(3):308-18. PubMed ID: 15217912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells.
    Zhang L; Bonev AD; Nelson MT; Mawe GM
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1552-61. PubMed ID: 7506489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the resting potential of rabbit pulmonary artery myocytes by a low threshold, O2-sensing potassium current.
    Osipenko ON; Evans AM; Gurney AM
    Br J Pharmacol; 1997 Apr; 120(8):1461-70. PubMed ID: 9113366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spontaneous transient outward currents and delayed rectifier K+ current: effects of hypoxia.
    Vandier C; Delpech M; Bonnet P
    Am J Physiol; 1998 Jul; 275(1):L145-54. PubMed ID: 9688946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox agents as a link between hypoxia and the responses of ionic channels in rabbit pulmonary vascular smooth muscle.
    Park MK; Lee SH; Ho WK; Earm YE
    Exp Physiol; 1995 Sep; 80(5):835-42. PubMed ID: 8546872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of voltage-gated K+ channels in mouse pulmonary artery smooth muscle cells.
    Ko EA; Burg ED; Platoshyn O; Msefya J; Firth AL; Yuan JX
    Am J Physiol Cell Physiol; 2007 Sep; 293(3):C928-37. PubMed ID: 17581857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypoxic and metabolic regulation of voltage-gated K+ channels in rat pulmonary artery smooth muscle cells.
    Yuan XJ; Tod ML; Rubin LJ; Blaustein MP
    Exp Physiol; 1995 Sep; 80(5):803-13. PubMed ID: 8546869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Inhibition of voltage-gated K+ current in rat intrapulmonary arterial smooth muscle cells by endothelin-1].
    Fan ZW; Zhang ZX; Xu YJ
    Yao Xue Xue Bao; 2004 Jan; 39(1):9-12. PubMed ID: 15127573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH regulation of voltage-dependent K+ channels in canine pulmonary arterial smooth muscle cells.
    Ahn DS; Hume JR
    Pflugers Arch; 1997 Apr; 433(6):758-65. PubMed ID: 9049167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular acidosis differentially regulates KV channels in coronary and pulmonary vascular muscle.
    Berger MG; Vandier C; Bonnet P; Jackson WF; Rusch NJ
    Am J Physiol; 1998 Oct; 275(4):H1351-9. PubMed ID: 9746485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of Ca2+-activated K+ channels and non-selective cation channels to membrane potential of pulmonary arterial smooth muscle cells of the rabbit.
    Bae YM; Park MK; Lee SH; Ho WK; Earm YE
    J Physiol; 1999 Feb; 514 ( Pt 3)(Pt 3):747-58. PubMed ID: 9882747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells.
    Thompson RJ; Nurse CA
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):421-34. PubMed ID: 9763632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular divalent cations block smooth muscle K+ channels.
    Gelband CH; Ishikawa T; Post JM; Keef KD; Hume JR
    Circ Res; 1993 Jul; 73(1):24-34. PubMed ID: 7685253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.