BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 9843892)

  • 1. ATP-sensitive K+ channel activation provides transient protection to the anoxic turtle brain.
    Pék-Scott M; Lutz PL
    Am J Physiol; 1998 Dec; 275(6):R2023-7. PubMed ID: 9843892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adenosine and ATP-sensitive potassium channels modulate dopamine release in the anoxic turtle (Trachemys scripta) striatum.
    Milton SL; Lutz PL
    Am J Physiol Regul Integr Comp Physiol; 2005 Jul; 289(1):R77-83. PubMed ID: 15718391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role for adenosine in channel arrest in the anoxic turtle brain.
    Pék M; Lutz PL
    J Exp Biol; 1997 Jul; 200(Pt 13):1913-7. PubMed ID: 9232005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial ATP-sensitive K+ channels regulate NMDAR activity in the cortex of the anoxic western painted turtle.
    Pamenter ME; Shin DS; Cooray M; Buck LT
    J Physiol; 2008 Feb; 586(4):1043-58. PubMed ID: 18079161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ATP-sensitive K+ channels during anoxia: major differences between rat (newborn and adult) and turtle neurons.
    Jiang C; Xia Y; Haddad GG
    J Physiol; 1992 Mar; 448():599-612. PubMed ID: 1593480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms for maintaining extracellular glutamate levels in the anoxic turtle striatum.
    Milton SL; Thompson JW; Lutz PL
    Am J Physiol Regul Integr Comp Physiol; 2002 May; 282(5):R1317-23. PubMed ID: 11959671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ion leakage is reduced during anoxia in turtle brain: a potential survival strategy.
    Chih CP; Rosenthal M; Sick TJ
    Am J Physiol; 1989 Dec; 257(6 Pt 2):R1562-4. PubMed ID: 2604013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na
    Stecyk JA; Farrell AP; Vornanen M
    Comp Biochem Physiol A Mol Integr Physiol; 2017 Apr; 206():11-16. PubMed ID: 28089857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain.
    Knickerbocker DL; Lutz PL
    J Exp Biol; 2001 Oct; 204(Pt 20):3547-51. PubMed ID: 11707503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen-sensitive reduction in Ca²⁺-activated K⁺ channel open probability in turtle cerebrocortex.
    Rodgers-Garlick CI; Hogg DW; Buck LT
    Neuroscience; 2013 May; 237():243-54. PubMed ID: 23384611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of adenosine and ATP in the brain of the freshwater turtle (Trachemys scripta) during long-term anoxia.
    Lutz PL; Kabler S
    Brain Res; 1997 Sep; 769(2):281-6. PubMed ID: 9374196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of extracellular glutamate levels in the long-term anoxic turtle striatum: coordinated activity of glutamate transporters, adenosine, K (ATP) (+) channels and GABA.
    Thompson JW; Prentice HM; Lutz PL
    J Biomed Sci; 2007 Nov; 14(6):809-17. PubMed ID: 17629717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of ATP-sensitive potassium channels exacerbates anoxic coma in
    Van Dusen RA; Shuster-Hyman H; Robertson RM
    J Neurophysiol; 2020 Dec; 124(6):1754-1765. PubMed ID: 33026923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anoxia-induced activation of ATP-sensitive K+ channels in guinea pig ventricular cells and its modulation by glycolysis.
    Shigematsu S; Arita M
    Cardiovasc Res; 1997 Aug; 35(2):273-82. PubMed ID: 9349390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism, ion homeostasis, and evoked potentials in anoxic turtle brain.
    Chih CP; Feng ZC; Rosenthal M; Lutz PL; Sick TJ
    Am J Physiol; 1989 Oct; 257(4 Pt 2):R854-60. PubMed ID: 2802002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of AMPA receptor currents by mitochondrial ATP-sensitive K+ channels in anoxic turtle neurons.
    Zivkovic G; Buck LT
    J Neurophysiol; 2010 Oct; 104(4):1913-22. PubMed ID: 20685922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid preconditioning neuroprotection following anoxia in hippocampal slices: role of the K+ ATP channel and protein kinase C.
    Pérez-Pinzón MA; Born JG
    Neuroscience; 1999 Mar; 89(2):453-9. PubMed ID: 10077327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of energy status, KATP channels and channel arrest in fish brain K+ gradient dissipation during anoxia.
    Johansson D; Nilsson G
    J Exp Biol; 1995; 198(Pt 12):2575-80. PubMed ID: 9320504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of K+ channels by intracellular ATP in human neocortical neurons.
    Jiang C; Haddad GG
    J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral anoxia tolerance in turtles: regulation of intracellular calcium and pH.
    Bickler PE
    Am J Physiol; 1992 Dec; 263(6 Pt 2):R1298-302. PubMed ID: 1481942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.