BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 9844113)

  • 21. A comparison of the bone mineral density of the vertebral bodies and the hip in elderly females with hip fractures. Assessment using dual photon absorptiometry.
    Kanbara Y; Mizuno K; Hirohata K; Shiraishi H
    Kobe J Med Sci; 1992 Feb; 38(1):21-36. PubMed ID: 1495269
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Axial loading studies of unstable intertrochanteric fractures of the femur.
    Apel DM; Patwardhan A; Pinzur MS; Dobozi WR
    Clin Orthop Relat Res; 1989 Sep; (246):156-64. PubMed ID: 2766604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Changes in strain distribution of loaded proximal femora caused by different types of cementless femoral stems.
    Decking R; Puhl W; Simon U; Claes LE
    Clin Biomech (Bristol, Avon); 2006 Jun; 21(5):495-501. PubMed ID: 16457913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures.
    Faulkner KG; Cummings SR; Black D; Palermo L; Glüer CC; Genant HK
    J Bone Miner Res; 1993 Oct; 8(10):1211-7. PubMed ID: 8256658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Biomechanical evaluation of dynamic hip screw with bone cement augmentation in normal bone].
    Li N; Peng A; Chai Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1299-301. PubMed ID: 18277669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical comparison of hard and soft hip protectors, and the influence of soft tissue.
    van Schoor NM; van der Veen AJ; Schaap LA; Smit TH; Lips P
    Bone; 2006 Aug; 39(2):401-7. PubMed ID: 16546458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantification of implant micromotion, strain shielding, and bone resorption with porous-coated anatomic medullary locking femoral prostheses.
    Engh CA; O'Connor D; Jasty M; McGovern TF; Bobyn JD; Harris WH
    Clin Orthop Relat Res; 1992 Dec; (285):13-29. PubMed ID: 1446429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Limited V-shaped cement augmentation of the proximal femur to prevent secondary hip fractures.
    Fliri L; Sermon A; Wähnert D; Schmoelz W; Blauth M; Windolf M
    J Biomater Appl; 2013 Jul; 28(1):136-43. PubMed ID: 22492197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly: an in vitro biomechanical study.
    Kannus P; Parkkari J; Poutala J
    Bone; 1999 Aug; 25(2):229-35. PubMed ID: 10456390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Age-related reductions in the strength of the femur tested in a fall-loading configuration.
    Courtney AC; Wachtel EF; Myers ER; Hayes WC
    J Bone Joint Surg Am; 1995 Mar; 77(3):387-95. PubMed ID: 7890787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fracture prevention by femoroplasty--cement augmentation of the proximal femur.
    Beckmann J; Springorum R; Vettorazzi E; Bachmeier S; Lüring C; Tingart M; Püschel K; Stark O; Grifka J; Gehrke T; Amling M; Gebauer M
    J Orthop Res; 2011 Nov; 29(11):1753-8. PubMed ID: 21500251
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy-shunting hip padding system attenuates femoral impact force in a simulated fall.
    Robinovitch SN; Hayes WC; McMahon TA
    J Biomech Eng; 1995 Nov; 117(4):409-13. PubMed ID: 8748522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall.
    Majumder S; Roychowdhury A; Pal S
    Clin Biomech (Bristol, Avon); 2013; 28(9-10):1034-40. PubMed ID: 24139746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Full-field strain measurement during mechanical testing of the human femur at physiologically relevant strain rates.
    Grassi L; Väänänen SP; Yavari SA; Jurvelin JS; Weinans H; Ristinmaa M; Zadpoor AA; Isaksson H
    J Biomech Eng; 2014 Nov; 136(11):. PubMed ID: 25162941
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of loading rate on strength of the proximal femur.
    Courtney AC; Wachtel EF; Myers ER; Hayes WC
    Calcif Tissue Int; 1994 Jul; 55(1):53-8. PubMed ID: 7922790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The relationship between loading conditions and fracture patterns of the proximal femur.
    Yang KH; Shen KL; Demetropoulos CK; King AI; Kolodziej P; Levine RS; Fitzgerald RH
    J Biomech Eng; 1996 Nov; 118(4):575-8. PubMed ID: 8950662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Static load on human cadaver femora with implanted hip endoprosthesis shafts in various forms].
    Dienel RB; Manitz L; Jungnickel I; Holzweissig F
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(4):219-26. PubMed ID: 6624174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A femoral neck fracture model in rabbits.
    Ohnishi I; Oikawa K; Tsuji K; Ichikawa T; Kurokawa T
    J Biomech; 2003 Mar; 36(3):431-42. PubMed ID: 12594991
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On functional adaptation of long bones. Investigations on human femora.
    Amtmann E
    Gegenbaurs Morphol Jahrb; 1972; 117(2):224-31. PubMed ID: 5022470
    [No Abstract]   [Full Text] [Related]  

  • 40. Development and Evaluation of Fall Impact Protection Pads Using Additive Manufacturing.
    Park JH; Jung HK; Lee JR
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31640163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.