BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 984464)

  • 1. The retinal morphology and retinal histochemistry of a twilight fish Corydoras paleatus (J.).
    Yew DT; Woo HH
    Anat Anz; 1976; 140(1-2):84-7. PubMed ID: 984464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The visual cells of the skate retina: structure, histochemistry, and disc-shedding properties.
    Szamier RB; Ripps H
    J Comp Neurol; 1983 Mar; 215(1):51-62. PubMed ID: 6853765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870).
    Bailes HJ; Robinson SR; Trezise AE; Collin SP
    J Comp Neurol; 2006 Jan; 494(3):381-97. PubMed ID: 16320259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina).
    Packer O; Hendrickson AE; Curcio CA
    J Comp Neurol; 1989 Oct; 288(1):165-83. PubMed ID: 2794135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific binding of peanut lectin to a class of retinal photoreceptor cells. A species comparison.
    Blanks JC; Johnson LV
    Invest Ophthalmol Vis Sci; 1984 May; 25(5):546-57. PubMed ID: 6715128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative visual function in elasmobranchs: spatial arrangement and ecological correlates of photoreceptor and ganglion cell distributions.
    Litherland L; Collin SP
    Vis Neurosci; 2008; 25(4):549-61. PubMed ID: 18606042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connexin 36 in photoreceptor cells: studies on transgenic rod-less and cone-less mouse retinas.
    Dang L; Pulukuri S; Mears AJ; Swaroop A; Reese BE; Sitaramayya A
    Mol Vis; 2004 May; 10():323-7. PubMed ID: 15152186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complexity of the visual cells and visual pathways of the sturgeon.
    Fang M; Li J; Kwong WH; Kindler P; Lu G; Wai SM; Yew DT
    Microsc Res Tech; 2004 Oct; 65(3):122-9. PubMed ID: 15605424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed histopathologic characterization of the retinopathy, globe enlarged (rge) chick phenotype.
    Montiani-Ferreira F; Fischer A; Cernuda-Cernuda R; Kiupel M; DeGrip WJ; Sherry D; Cho SS; Shaw GC; Evans MG; Hocking PM; Petersen-Jones SM
    Mol Vis; 2005 Jan; 11():11-27. PubMed ID: 15660021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histochemical demonstration of glycogen in neurons of the cat retina.
    Rungger-Brändle E; Kolb H; Niemeyer G
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):702-15. PubMed ID: 8603856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of iodopsin in the chick retina during in vivo and in vitro cone differentiation.
    Araki M; Fukada Y; Shichida Y; Yoshizawa T
    Invest Ophthalmol Vis Sci; 1990 Aug; 31(8):1466-73. PubMed ID: 2201661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atypical mitochondria in the ellipsoid of the photoreceptor cells of vertebrate retinas.
    Ishikawa T; Yamada E
    Invest Ophthalmol; 1969 Jun; 8(3):302-16. PubMed ID: 4890857
    [No Abstract]   [Full Text] [Related]  

  • 13. The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure.
    Branchek T; Bremiller R
    J Comp Neurol; 1984 Mar; 224(1):107-15. PubMed ID: 6715574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histochemical investigations into the lipid nature of the oil-droplet in the retinal twin-cones of Lebistes reticulatus (Peters). (With 5 figures).
    Kunz YW; Regan C
    Rev Suisse Zool; 1973; 80(3):699-703. PubMed ID: 4358751
    [No Abstract]   [Full Text] [Related]  

  • 15. Synaptic contacts between bipolar and photoreceptor cells in the retina of Callionymus lyra L.
    Van Haesendonck E; Missotten L
    J Comp Neurol; 1984 Mar; 223(3):387-99. PubMed ID: 6707252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoreceptor layer of salmonid fishes: transformation and loss of single cones in juvenile fish.
    Cheng CL; Flamarique IN; Hárosi FI; Rickers-Haunerland J; Haunerland NH
    J Comp Neurol; 2006 Mar; 495(2):213-35. PubMed ID: 16435286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal organization of the eyes of three nototheniid fishes from the Ross Sea (Antarctica).
    Meyer-Rochow VB; Klyne MA
    Gegenbaurs Morphol Jahrb; 1982; 128(5):762-77. PubMed ID: 7152226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fine structure and radioautography of retinal cone outer segments in goldfish and carp.
    Bunt AH; Klock IB
    Invest Ophthalmol Vis Sci; 1980 Jul; 19(7):707-19. PubMed ID: 7390721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cone photoreceptor diversity in the retinas of fruit bats (megachiroptera).
    Müller B; Goodman SM; Peichl L
    Brain Behav Evol; 2007; 70(2):90-104. PubMed ID: 17522478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreceptor fine structure in light- and dark-adaptation in the butterfly fish (Pantodon buchholzi).
    Braekevelt CR
    Anat Anz; 1990; 171(5):351-8. PubMed ID: 2088152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.