These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 9845093)
1. The measurement of bioreductive capacity of tumor cells using methylene blue. Biaglow JE; Koch CJ; Tuttle SW; Manevich Y; Ayene IS; Bernhard EJ; McKenna WG; Kachur AV Int J Radiat Oncol Biol Phys; 1998 Nov; 42(4):769-73. PubMed ID: 9845093 [TBL] [Abstract][Full Text] [Related]
2. Reduction and uptake of methylene blue by human erythrocytes. May JM; Qu ZC; Cobb CE Am J Physiol Cell Physiol; 2004 Jun; 286(6):C1390-8. PubMed ID: 14973146 [TBL] [Abstract][Full Text] [Related]
3. Methylene blue directly oxidizes glutathione without the intermediate formation of hydrogen peroxide. Kelner MJ; Alexander NM J Biol Chem; 1985 Dec; 260(28):15168-71. PubMed ID: 4066667 [TBL] [Abstract][Full Text] [Related]
4. A spontaneous mutation in the nicotinamide nucleotide transhydrogenase gene of C57BL/6J mice results in mitochondrial redox abnormalities. Ronchi JA; Figueira TR; Ravagnani FG; Oliveira HC; Vercesi AE; Castilho RF Free Radic Biol Med; 2013 Oct; 63():446-56. PubMed ID: 23747984 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of hydroperoxide degradation by NADP-glutathione system in mitochondria. Kurosawa K; Shibata H; Hayashi N; Sato N; Kamada T; Tagawa K J Biochem; 1990 Jul; 108(1):9-16. PubMed ID: 2229015 [TBL] [Abstract][Full Text] [Related]
6. Effect of anisotonic cell-volume modulation on glutathione-S-conjugate release, t-butylhydroperoxide metabolism and the pentose-phosphate shunt in perfused rat liver. Saha N; Stoll B; Lang F; Häussinger D Eur J Biochem; 1992 Oct; 209(1):437-44. PubMed ID: 1396717 [TBL] [Abstract][Full Text] [Related]
7. Intracellular reduction of selenite into glutathione peroxidase. Evidence for involvement of NADPH and not glutathione as the reductant. Bhamre S; Nuzzo RL; Whitin JC; Olshen RA; Cohen HJ Mol Cell Biochem; 2000 Aug; 211(1-2):9-17. PubMed ID: 11055542 [TBL] [Abstract][Full Text] [Related]
8. tert.-Butyl hydroperoxide metabolism and stimulation of the pentose phosphate pathway in isolated rat hepatocytes. Rush GF; Alberts D Toxicol Appl Pharmacol; 1986 Sep; 85(3):324-31. PubMed ID: 2945286 [TBL] [Abstract][Full Text] [Related]
9. Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement. Paim BA; Velho JA; Castilho RF; Oliveira HC; Vercesi AE Free Radic Biol Med; 2008 Feb; 44(3):444-51. PubMed ID: 17991444 [TBL] [Abstract][Full Text] [Related]
10. Bioreductive metabolism of SR-4233 (WIN 59075) by whole cell suspensions under aerobic and hypoxic conditions: role of the pentose cycle and implications for the mechanism of cytotoxicity observed in air. Tuttle SW; Hazard L; Koch CJ; Mitchell JB; Coleman CN; Biaglow JE Int J Radiat Oncol Biol Phys; 1994 May; 29(2):357-62. PubMed ID: 8195033 [TBL] [Abstract][Full Text] [Related]
11. Effect of leucine on the pyridine nucleotide contents of islets and on the insulin released--interactions in vitro with methylene blue, thiol oxidants, and p-chloromercuribenzoate. Ammon HP; Hoppe E; Akhtar MS; Niklas H Diabetes; 1979 Jun; 28(6):593-9. PubMed ID: 36318 [TBL] [Abstract][Full Text] [Related]
12. Effects of t-butyl hydroperoxide on NADPH, glutathione, and the respiratory burst of rat alveolar macrophages. Sutherland MW; Nelson J; Harrison G; Forman HJ Arch Biochem Biophys; 1985 Dec; 243(2):325-31. PubMed ID: 3002274 [TBL] [Abstract][Full Text] [Related]
13. Defenses against oxidation in human erythrocytes: role of glutathione reductase in the activation of glucose decarboxylation by hemolytic drugs. Hohl RJ; Kennedy EJ; Frischer H J Lab Clin Med; 1991 Apr; 117(4):325-31. PubMed ID: 1901343 [TBL] [Abstract][Full Text] [Related]
14. The influence of methylene blue on the respiratory metabolism of the reticulocyte. Rapoport SM; Müller M Eur J Biochem; 1974 Jul; 46(2):335-40. PubMed ID: 4153126 [No Abstract] [Full Text] [Related]
15. Protection of myocytes against free radical-induced damage by accelerated turnover of the glutathione redox cycle. Le CT; Hollaar L; Van der Valk EJ; Franken NA; Van Ravels FJ; Wondergem J; Van der Laarse A Eur Heart J; 1995 Apr; 16(4):553-62. PubMed ID: 7671903 [TBL] [Abstract][Full Text] [Related]
16. Intracellular restraint: a new basis for the limitation in response to oxidative stress in human erythrocytes containing low-activity variants of glucose-6-phosphate dehydrogenase. Gaetani GD; Parker JC; Kirkman HN Proc Natl Acad Sci U S A; 1974 Sep; 71(9):3584-7. PubMed ID: 4154443 [TBL] [Abstract][Full Text] [Related]
17. Methylene blue induced O Bouillaud F; Ransy C; Moreau M; Benhaim J; Lombès A; Haouzi P Respir Physiol Neurobiol; 2022 Oct; 304():103939. PubMed ID: 35777722 [TBL] [Abstract][Full Text] [Related]
18. Oxygen dependence of oxidative stress. Rate of NADPH supply for maintaining the GSH pool during hypoxia. Tribble DL; Jones DP Biochem Pharmacol; 1990 Feb; 39(4):729-36. PubMed ID: 2306281 [TBL] [Abstract][Full Text] [Related]
19. Impaired activation of glucose oxidation and NADPH supply in human endothelial cells exposed to H2O2 in high-glucose medium. Asahina T; Kashiwagi A; Nishio Y; Ikebuchi M; Harada N; Tanaka Y; Takagi Y; Saeki Y; Kikkawa R; Shigeta Y Diabetes; 1995 May; 44(5):520-6. PubMed ID: 7729609 [TBL] [Abstract][Full Text] [Related]
20. Generation of oxidant stress in cultured endothelial cells by methylene blue: protective effects of glucose and ascorbic acid. May JM; Qu ZC; Whitesell RR Biochem Pharmacol; 2003 Sep; 66(5):777-84. PubMed ID: 12948858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]