BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9845329)

  • 1. C-terminal truncation of yeast SerRS is toxic for Saccharomyces cerevisiae due to altered mechanism of substrate recognition.
    Lenhard B; Praetorius-Ibba M; Filipic S; Söll D; Weygand-Durasevic I
    FEBS Lett; 1998 Nov; 439(3):235-40. PubMed ID: 9845329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The C-terminal extension of yeast seryl-tRNA synthetase affects stability of the enzyme and its substrate affinity.
    Weygand-Durasević I; Lenhard B; Filipić S; Söll D
    J Biol Chem; 1996 Feb; 271(5):2455-61. PubMed ID: 8576207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast seryl-tRNA synthetase expressed in Escherichia coli recognizes bacterial serine-specific tRNAs in vivo.
    Weygand-Durasević I; Ban N; Jahn D; Söll D
    Eur J Biochem; 1993 Jun; 214(3):869-77. PubMed ID: 7686490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of yeast seryl-tRNA synthetase active site mutants with improved discrimination against substrate analogues.
    Landeka I; Filipic-Rocak S; Zinic B; Weygand-Durasevic I
    Biochim Biophys Acta; 2000 Jul; 1480(1-2):160-70. PubMed ID: 11004561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyl-tRNA synthetase.
    Kekez M; Zanki V; Kekez I; Baranasic J; Hodnik V; Duchêne AM; Anderluh G; Gruic-Sovulj I; Matković-Čalogović D; Weygand-Durasevic I; Rokov-Plavec J
    FEBS J; 2019 Feb; 286(3):536-554. PubMed ID: 30570212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Seryl-tRNA synthetase from Escherichia coli: functional evidence for cross-dimer tRNA binding during aminoacylation.
    Vincent C; Borel F; Willison JC; Leberman R; Härtlein M
    Nucleic Acids Res; 1995 Apr; 23(7):1113-8. PubMed ID: 7537870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into substrate promiscuity of human seryl-tRNA synthetase.
    Holman KM; Puppala AK; Lee JW; Lee H; Simonović M
    RNA; 2017 Nov; 23(11):1685-1699. PubMed ID: 28808125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proximal region of a noncatalytic eukaryotic seryl-tRNA synthetase extension is required for protein stability in vitro and in vivo.
    Mocibob M; Weygand-Durasevic I
    Arch Biochem Biophys; 2008 Feb; 470(2):129-38. PubMed ID: 18067851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxin Pex21p interacts with the C-terminal noncatalytic domain of yeast seryl-tRNA synthetase and forms a specific ternary complex with tRNA(Ser).
    Godinic V; Mocibob M; Rocak S; Ibba M; Weygand-Durasevic I
    FEBS J; 2007 Jun; 274(11):2788-99. PubMed ID: 17451428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. tRNA-dependent amino acid discrimination by yeast seryl-tRNA synthetase.
    Gruic-Sovulj I; Landeka I; Söll D; Weygand-Durasevic I
    Eur J Biochem; 2002 Nov; 269(21):5271-9. PubMed ID: 12392560
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maize mitochondrial seryl-tRNA synthetase recognizes Escherichia coli tRNA(Ser) in vivo and in vitro.
    Rokov J; Söll D; Weygand-Durasević I
    Plant Mol Biol; 1998 Oct; 38(3):497-502. PubMed ID: 9747857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Maize seryl-tRNA synthetase: specificity of substrate recognition by the organellar enzyme.
    Rokov-Plavec J; Lesjak S; Landeka I; Mijakovic I; Weygand-Durasevic I
    Arch Biochem Biophys; 2002 Jan; 397(1):40-50. PubMed ID: 11747308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates.
    Sampson JR; Saks ME
    Nucleic Acids Res; 1993 Sep; 21(19):4467-75. PubMed ID: 8233780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii.
    Itoh Y; Sekine S; Kuroishi C; Terada T; Shirouzu M; Kuramitsu S; Yokoyama S
    RNA Biol; 2008; 5(3):169-77. PubMed ID: 18818520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defining the active site of yeast seryl-tRNA synthetase. Mutations in motif 2 loop residues affect tRNA-dependent amino acid recognition.
    Lenhard B; Filipić S; Landeka I; Skrtić I; Söll D; Weygand-Durasević I
    J Biol Chem; 1997 Jan; 272(2):1136-41. PubMed ID: 8995413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs.
    Fu X; Crnković A; Sevostyanova A; Söll D
    FEBS Lett; 2018 Nov; 592(22):3759-3768. PubMed ID: 30317559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure, function and evolution of seryl-tRNA synthetases: implications for the evolution of aminoacyl-tRNA synthetases and the genetic code.
    Härtlein M; Cusack S
    J Mol Evol; 1995 May; 40(5):519-30. PubMed ID: 7540217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seryl-tRNA synthetase is not responsible for the evolution of CUG codon reassignment in Candida albicans.
    O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF
    Yeast; 2001 Mar; 18(4):313-22. PubMed ID: 11223940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shuffling of discrete tRNASer regions reveals differently utilized identity elements in yeast and methanogenic archaea.
    Gruic-Sovulj I; Jaric J; Dulic M; Cindric M; Weygand-Durasevic I
    J Mol Biol; 2006 Aug; 361(1):128-39. PubMed ID: 16822522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and tRNA recognition of mammalian mitochondrial seryl-tRNA synthetase.
    Yokogawa T; Shimada N; Takeuchi N; Benkowski L; Suzuki T; Omori A; Ueda T; Nishikawa K; Spremulli LL; Watanabe K
    J Biol Chem; 2000 Jun; 275(26):19913-20. PubMed ID: 10764807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.