These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 9845780)
1. Dry powder inhalers: the influence of device resistance and powder formulation on drug and lactose deposition in vitro. Srichana T; Martin GP; Marriott C Eur J Pharm Sci; 1998 Dec; 7(1):73-80. PubMed ID: 9845780 [TBL] [Abstract][Full Text] [Related]
2. Influence of realistic inspiratory flow profiles on fine particle fractions of dry powder aerosol formulations. Martin GP; Marriott C; Zeng XM Pharm Res; 2007 Feb; 24(2):361-9. PubMed ID: 17177114 [TBL] [Abstract][Full Text] [Related]
3. The use of different grades of lactose as a carrier for aerosolised salbutamol sulphate. Larhrib H; Zeng XM; Martin GP; Marriott C; Pritchard J Int J Pharm; 1999 Nov; 191(1):1-14. PubMed ID: 10556735 [TBL] [Abstract][Full Text] [Related]
4. The influence of carrier morphology on drug delivery by dry powder inhalers. Zeng XM; Martin GP; Marriott C; Pritchard J Int J Pharm; 2000 Apr; 200(1):93-106. PubMed ID: 10845690 [TBL] [Abstract][Full Text] [Related]
5. Effects of particle size and adding sequence of fine lactose on the deposition of salbutamol sulphate from a dry powder formulation. Zeng XM; Martin GP; Tee SK; Ghoush AA; Marriott C Int J Pharm; 1999 May; 182(2):133-44. PubMed ID: 10341303 [TBL] [Abstract][Full Text] [Related]
6. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler. de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246 [TBL] [Abstract][Full Text] [Related]
7. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers. Zeng XM; MacRitchie HB; Marriott C; Martin GP Int J Pharm; 2007 Mar; 333(1-2):45-55. PubMed ID: 17064863 [TBL] [Abstract][Full Text] [Related]
8. The contribution of different formulation components on the aerosol charge in carrier-based dry powder inhaler systems. Hoe S; Traini D; Chan HK; Young PM Pharm Res; 2010 Jul; 27(7):1325-36. PubMed ID: 20354768 [TBL] [Abstract][Full Text] [Related]
9. Protein deposition from dry powder inhalers: fine particle multiplets as performance modifiers. Lucas P; Anderson K; Staniforth JN Pharm Res; 1998 Apr; 15(4):562-9. PubMed ID: 9587952 [TBL] [Abstract][Full Text] [Related]
10. The effects of loaded carrier mass and formulation mass on aerosolization efficiency in dry powder inhaler devices. Ooi J; Gill C; Young PM; Traini D Curr Drug Deliv; 2015; 12(1):40-6. PubMed ID: 25146438 [TBL] [Abstract][Full Text] [Related]
11. The effects of carrier size and morphology on the dispersion of salbutamol sulphate after aerosolization at different flow rates. Zeng XM; Martin GP; Marriott C; Pritchard J J Pharm Pharmacol; 2000 Oct; 52(10):1211-21. PubMed ID: 11092565 [TBL] [Abstract][Full Text] [Related]
12. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate. Xu Z; Mansour HM; Mulder T; McLean R; Langridge J; Hickey AJ J Pharm Sci; 2010 Aug; 99(8):3398-414. PubMed ID: 20198688 [TBL] [Abstract][Full Text] [Related]
13. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler. Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187 [TBL] [Abstract][Full Text] [Related]
14. The use of different sugars as fine and coarse carriers for aerosolised salbutamol sulphate. Tee SK; Marriott C; Zeng XM; Martin GP Int J Pharm; 2000 Nov; 208(1-2):111-23. PubMed ID: 11064216 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of Granulated Lactose as a Carrier for Dry Powder Inhaler Formulations 2: Effect of Drugs and Drug Loading. Du P; Du J; Smyth HDC J Pharm Sci; 2017 Jan; 106(1):366-376. PubMed ID: 27939234 [TBL] [Abstract][Full Text] [Related]
16. Effect of rise in simulated inspiratory flow rate and carrier particle size on powder emptying from dry powder inhalers. Chavan V; Dalby R AAPS PharmSci; 2000; 2(2):E10. PubMed ID: 11741226 [TBL] [Abstract][Full Text] [Related]
17. Dynamic electrostatic charge of lactose-salbutamol sulphate powder blends dispersed from a Cyclohaler®. Hoe S; Young PM; Traini D Drug Dev Ind Pharm; 2011 Nov; 37(11):1365-75. PubMed ID: 21554161 [TBL] [Abstract][Full Text] [Related]
18. Lactose as a carrier in dry powder formulations: the influence of surface characteristics on drug delivery. Zeng XM; Martin GP; Marriott C; Pritchard J J Pharm Sci; 2001 Sep; 90(9):1424-34. PubMed ID: 11745794 [TBL] [Abstract][Full Text] [Related]
19. Interaction of Formulation and Device Factors Determine the In Vitro Performance of Salbutamol Sulphate Dry Powders for Inhalation. Muddle J; Murnane D; Parisini I; Brown M; Page C; Forbes B J Pharm Sci; 2015 Nov; 104(11):3861-3869. PubMed ID: 26220184 [TBL] [Abstract][Full Text] [Related]
20. Formulating powder-device combinations for salmeterol xinafoate dry powder inhalers. Hassoun M; Ho S; Muddle J; Buttini F; Parry M; Hammond M; Forbes B Int J Pharm; 2015 Jul; 490(1-2):360-7. PubMed ID: 25987210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]