BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 9846874)

  • 1. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP.
    Nassar N; Hoffman GR; Manor D; Clardy JC; Cerione RA
    Nat Struct Biol; 1998 Dec; 5(12):1047-52. PubMed ID: 9846874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence.
    Nomanbhoy TK; Leonard DA; Manor D; Cerione RA
    Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP.
    Rittinger K; Walker PA; Eccleston JF; Nurmahomed K; Owen D; Laue E; Gamblin SJ; Smerdon SJ
    Nature; 1997 Aug; 388(6643):693-7. PubMed ID: 9262406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein.
    Abdul-Manan N; Aghazadeh B; Liu GA; Majumdar A; Ouerfelli O; Siminovitch KA; Rosen MK
    Nature; 1999 May; 399(6734):379-83. PubMed ID: 10360578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride.
    Graham DL; Eccleston JF; Lowe PN
    Biochemistry; 1999 Jan; 38(3):985-91. PubMed ID: 9893994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue.
    Rittinger K; Walker PA; Eccleston JF; Smerdon SJ; Gamblin SJ
    Nature; 1997 Oct; 389(6652):758-62. PubMed ID: 9338791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK.
    Mott HR; Owen D; Nietlispach D; Lowe PN; Manser E; Lim L; Laue ED
    Nature; 1999 May; 399(6734):384-8. PubMed ID: 10360579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras.
    Scheffzek K; Lautwein A; Kabsch W; Ahmadian MR; Wittinghofer A
    Nature; 1996 Dec; 384(6609):591-6. PubMed ID: 8955277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42.
    Fidyk N; Wang JB; Cerione RA
    Biochemistry; 2006 Jun; 45(25):7750-62. PubMed ID: 16784226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aluminum fluoride associates with the small guanine nucleotide binding proteins.
    Ahmadian MR; Mittal R; Hall A; Wittinghofer A
    FEBS Lett; 1997 May; 408(3):315-8. PubMed ID: 9188784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of the GTPase-activating domain from p50rhoGAP.
    Barrett T; Xiao B; Dodson EJ; Dodson G; Ludbrook SB; Nurmahomed K; Gamblin SJ; Musacchio A; Smerdon SJ; Eccleston JF
    Nature; 1997 Jan; 385(6615):458-61. PubMed ID: 9009196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants.
    Scheffzek K; Ahmadian MR; Kabsch W; Wiesmüller L; Lautwein A; Schmitz F; Wittinghofer A
    Science; 1997 Jul; 277(5324):333-8. PubMed ID: 9219684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs.
    Hart MJ; Callow MG; Souza B; Polakis P
    EMBO J; 1996 Jun; 15(12):2997-3005. PubMed ID: 8670801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein.
    Leonard DA; Lin R; Cerione RA; Manor D
    J Biol Chem; 1998 Jun; 273(26):16210-5. PubMed ID: 9632678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains.
    Zhang B; Wang ZX; Zheng Y
    J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAP into the breach.
    Sprang SR
    Science; 1997 Jul; 277(5324):329-30. PubMed ID: 9518363
    [No Abstract]   [Full Text] [Related]  

  • 17. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth.
    Murphy GA; Solski PA; Jillian SA; Pérez de la Ossa P; D'Eustachio P; Der CJ; Rush MG
    Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transduction via Ras.
    Wittinghofer A
    Biol Chem; 1998; 379(8-9):933-7. PubMed ID: 9792425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins.
    Mittal R; Ahmadian MR; Goody RS; Wittinghofer A
    Science; 1996 Jul; 273(5271):115-7. PubMed ID: 8658179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis.
    Fidyk NJ; Cerione RA
    Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.