These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 9846874)
1. Structures of Cdc42 bound to the active and catalytically compromised forms of Cdc42GAP. Nassar N; Hoffman GR; Manor D; Clardy JC; Cerione RA Nat Struct Biol; 1998 Dec; 5(12):1047-52. PubMed ID: 9846874 [TBL] [Abstract][Full Text] [Related]
2. Investigation of the GTP-binding/GTPase cycle of Cdc42Hs using extrinsic reporter group fluorescence. Nomanbhoy TK; Leonard DA; Manor D; Cerione RA Biochemistry; 1996 Apr; 35(14):4602-8. PubMed ID: 8605211 [TBL] [Abstract][Full Text] [Related]
3. Crystal structure of a small G protein in complex with the GTPase-activating protein rhoGAP. Rittinger K; Walker PA; Eccleston JF; Nurmahomed K; Owen D; Laue E; Gamblin SJ; Smerdon SJ Nature; 1997 Aug; 388(6643):693-7. PubMed ID: 9262406 [TBL] [Abstract][Full Text] [Related]
4. Structure of Cdc42 in complex with the GTPase-binding domain of the 'Wiskott-Aldrich syndrome' protein. Abdul-Manan N; Aghazadeh B; Liu GA; Majumdar A; Ouerfelli O; Siminovitch KA; Rosen MK Nature; 1999 May; 399(6734):379-83. PubMed ID: 10360578 [TBL] [Abstract][Full Text] [Related]
5. The conserved arginine in rho-GTPase-activating protein is essential for efficient catalysis but not for complex formation with Rho.GDP and aluminum fluoride. Graham DL; Eccleston JF; Lowe PN Biochemistry; 1999 Jan; 38(3):985-91. PubMed ID: 9893994 [TBL] [Abstract][Full Text] [Related]
6. Structure at 1.65 A of RhoA and its GTPase-activating protein in complex with a transition-state analogue. Rittinger K; Walker PA; Eccleston JF; Smerdon SJ; Gamblin SJ Nature; 1997 Oct; 389(6652):758-62. PubMed ID: 9338791 [TBL] [Abstract][Full Text] [Related]
7. Structure of the small G protein Cdc42 bound to the GTPase-binding domain of ACK. Mott HR; Owen D; Nietlispach D; Lowe PN; Manser E; Lim L; Laue ED Nature; 1999 May; 399(6734):384-8. PubMed ID: 10360579 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras. Scheffzek K; Lautwein A; Kabsch W; Ahmadian MR; Wittinghofer A Nature; 1996 Dec; 384(6609):591-6. PubMed ID: 8955277 [TBL] [Abstract][Full Text] [Related]
9. Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42. Fidyk N; Wang JB; Cerione RA Biochemistry; 2006 Jun; 45(25):7750-62. PubMed ID: 16784226 [TBL] [Abstract][Full Text] [Related]
10. Aluminum fluoride associates with the small guanine nucleotide binding proteins. Ahmadian MR; Mittal R; Hall A; Wittinghofer A FEBS Lett; 1997 May; 408(3):315-8. PubMed ID: 9188784 [TBL] [Abstract][Full Text] [Related]
11. The structure of the GTPase-activating domain from p50rhoGAP. Barrett T; Xiao B; Dodson EJ; Dodson G; Ludbrook SB; Nurmahomed K; Gamblin SJ; Musacchio A; Smerdon SJ; Eccleston JF Nature; 1997 Jan; 385(6615):458-61. PubMed ID: 9009196 [TBL] [Abstract][Full Text] [Related]
12. The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Scheffzek K; Ahmadian MR; Kabsch W; Wiesmüller L; Lautwein A; Schmitz F; Wittinghofer A Science; 1997 Jul; 277(5324):333-8. PubMed ID: 9219684 [TBL] [Abstract][Full Text] [Related]
13. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. Hart MJ; Callow MG; Souza B; Polakis P EMBO J; 1996 Jun; 15(12):2997-3005. PubMed ID: 8670801 [TBL] [Abstract][Full Text] [Related]
14. Biochemical studies of the mechanism of action of the Cdc42-GTPase-activating protein. Leonard DA; Lin R; Cerione RA; Manor D J Biol Chem; 1998 Jun; 273(26):16210-5. PubMed ID: 9632678 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the interactions between the small GTPase Cdc42 and its GTPase-activating proteins and putative effectors. Comparison of kinetic properties of Cdc42 binding to the Cdc42-interactive domains. Zhang B; Wang ZX; Zheng Y J Biol Chem; 1997 Aug; 272(35):21999-2007. PubMed ID: 9268338 [TBL] [Abstract][Full Text] [Related]
16. GAP into the breach. Sprang SR Science; 1997 Jul; 277(5324):329-30. PubMed ID: 9518363 [No Abstract] [Full Text] [Related]
17. Cellular functions of TC10, a Rho family GTPase: regulation of morphology, signal transduction and cell growth. Murphy GA; Solski PA; Jillian SA; Pérez de la Ossa P; D'Eustachio P; Der CJ; Rush MG Oncogene; 1999 Jul; 18(26):3831-45. PubMed ID: 10445846 [TBL] [Abstract][Full Text] [Related]
18. Signal transduction via Ras. Wittinghofer A Biol Chem; 1998; 379(8-9):933-7. PubMed ID: 9792425 [TBL] [Abstract][Full Text] [Related]
19. Formation of a transition-state analog of the Ras GTPase reaction by Ras-GDP, tetrafluoroaluminate, and GTPase-activating proteins. Mittal R; Ahmadian MR; Goody RS; Wittinghofer A Science; 1996 Jul; 273(5271):115-7. PubMed ID: 8658179 [TBL] [Abstract][Full Text] [Related]
20. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis. Fidyk NJ; Cerione RA Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]