These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63 related articles for article (PubMed ID: 984716)
1. In vitro transformation of ochratoxin A by animal microbioal floras. Galtier P; Alvinerie M Ann Rech Vet; 1976; 7(1):91-8. PubMed ID: 984716 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Kiessling KH; Pettersson H; Sandholm K; Olsen M Appl Environ Microbiol; 1984 May; 47(5):1070-3. PubMed ID: 6234859 [TBL] [Abstract][Full Text] [Related]
3. Grain overload in cattle and sheep: changes in microbial populations in the cecum and rumen. Allison MJ; Robinson IM; Dougherty RW; Bucklin JA Am J Vet Res; 1975 Feb; 36(2):181-5. PubMed ID: 234213 [TBL] [Abstract][Full Text] [Related]
4. Degradation of ochratoxin A by a ruminant. Hult K; Teiling A; Gatenbeck S Appl Environ Microbiol; 1976 Sep; 32(3):443-4. PubMed ID: 988783 [TBL] [Abstract][Full Text] [Related]
5. [Comparison of microbial population of the rumen and their seasonal metabolism in Senegalese zebus and sheep]. Blancou J Rev Elev Med Vet Pays Trop; 1978; 31(1):21-6. PubMed ID: 715289 [No Abstract] [Full Text] [Related]
6. DDT- 14 C-metabolism by rumen bacteria and protozoa in vitro. Kutches AJ; Church DC J Dairy Sci; 1971 Apr; 54(4):540-3. PubMed ID: 5570091 [No Abstract] [Full Text] [Related]
7. Inactivation of Clostridium botulinum toxin by ruminal microbes from cattle and sheep. Allison MJ; Maloy SE; Matson RR Appl Environ Microbiol; 1976 Nov; 32(5):685-8. PubMed ID: 984838 [TBL] [Abstract][Full Text] [Related]
8. Effects of nitro compounds and feedstuffs on in vitro methane production in chicken cecal contents and rumen fluid. Saengkerdsub S; Kim WK; Anderson RC; Nisbet DJ; Ricke SC Anaerobe; 2006 Apr; 12(2):85-92. PubMed ID: 16701620 [TBL] [Abstract][Full Text] [Related]
9. Effects of chronic ingestion of ochratoxin a on blood levels and excretion of the mycotoxin in sheep. Blank R; Rolfs JP; Südekum KH; Frohlich AA; Marquardt RR; Wolffram S J Agric Food Chem; 2003 Nov; 51(23):6899-905. PubMed ID: 14582993 [TBL] [Abstract][Full Text] [Related]
10. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro. Mohammed N; Onodera R; Or-Rashid MM Amino Acids; 2003; 24(1-2):73-80. PubMed ID: 12624737 [TBL] [Abstract][Full Text] [Related]
11. The use of PCR for the identification and characterisation of bacteriocin genes from bacterial strains isolated from rumen or caecal contents of cattle and sheep. Cookson AL; Noel SJ; Kelly WJ; Attwood GT FEMS Microbiol Ecol; 2004 May; 48(2):199-207. PubMed ID: 19712403 [TBL] [Abstract][Full Text] [Related]
13. Ochratoxin A in ruminants−A review on its degradation by gut microbes and effects on animals. Mobashar M; Hummel J; Blank R; Südekum KH Toxins (Basel); 2010 Apr; 2(4):809-39. PubMed ID: 22069612 [TBL] [Abstract][Full Text] [Related]
14. Size fractionation of a rumen microbial population by counter-flow centrifugal elutriation. Munyard KA; Baker SK J Microbiol Methods; 2006 Dec; 67(3):566-73. PubMed ID: 16820232 [TBL] [Abstract][Full Text] [Related]
15. Association of methanogenic bacteria with rumen protozoa. Krumholz LR; Forsberg CW; Veira DM Can J Microbiol; 1983 Jun; 29(6):676-80. PubMed ID: 6411316 [TBL] [Abstract][Full Text] [Related]
16. Effects of Fusarium toxin-contaminated wheat grain on nutrient turnover, microbial protein synthesis and metabolism of deoxynivalenol and zearalenone in the rumen of dairy cows. Dänicke S; Matthäus K; Lebzien P; Valenta H; Stemme K; Ueberschär KH; Razzazi-Fazeli E; Böhm J; Flachowsky G J Anim Physiol Anim Nutr (Berl); 2005 Oct; 89(9-10):303-15. PubMed ID: 16138860 [TBL] [Abstract][Full Text] [Related]
17. Kinetic profiles of ochratoxin A and ochratoxin alpha during in vitro incubation in buffered forestomach and abomasal contents from cows. Müller HM; Lerch C; Müller K; Eggert W Nat Toxins; 1998; 6(6):251-8. PubMed ID: 10441032 [TBL] [Abstract][Full Text] [Related]
18. The in vitro metabolism of 2,6-diaminopimelic acid by rumen micro-organisms. Lane HA; Ling JR Proc Nutr Soc; 1979 Sep; 38(2):80A. PubMed ID: 504199 [No Abstract] [Full Text] [Related]
19. Klebsiella to Salmonella gene transfer within rumen protozoa: implications for antibiotic resistance and rumen defaunation. McCuddin ZP; Carlson SA; Rasmussen MA; Franklin SK Vet Microbiol; 2006 May; 114(3-4):275-84. PubMed ID: 16423473 [TBL] [Abstract][Full Text] [Related]
20. Characterization of rumen bacterial pyrrolizidine alkaloid biotransformation in ruminants of various species. Wachenheim DE; Blythe LL; Craig AM Vet Hum Toxicol; 1992 Dec; 34(6):513-7. PubMed ID: 1287970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]