These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 984828)
21. Resistance in sunflower and interaction with Bacillus thuringiensis for control of banded sunflower moth (Lepidoptera: Tortricidae). Jyoti JL; Brewer GJ J Econ Entomol; 1999 Oct; 92(5):1230-3. PubMed ID: 10582050 [TBL] [Abstract][Full Text] [Related]
22. Assessment of microencapsulated formulations for improved residual activity of Bacillus thuringiensis. Tamez-Guerra P; McGuire MR; Behle RW; Shasha BS; Wong LJ J Econ Entomol; 2000 Apr; 93(2):219-25. PubMed ID: 10826165 [TBL] [Abstract][Full Text] [Related]
23. Interactions between Nosema pyrausta (Microsporidia: Nosematidae) and Bacillus thuringiensis subsp. kurstaki in the European corn borer (Lepidoptera: Pyralidae). Pierce CM; Solter LF; Weinzierl RA J Econ Entomol; 2001 Dec; 94(6):1361-8. PubMed ID: 11777037 [TBL] [Abstract][Full Text] [Related]
24. Contact toxicity of insecticides for attract-and-kill applications against adult Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). Campos M; Phillips TW Pest Manag Sci; 2010 Jul; 66(7):752-61. PubMed ID: 20205231 [TBL] [Abstract][Full Text] [Related]
25. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. Orozco-Flores AA; Valadez-Lira JA; Oppert B; Gomez-Flores R; Tamez-Guerra R; Rodríguez-Padilla C; Tamez-Guerra P J Insect Physiol; 2017 Apr; 98():275-283. PubMed ID: 28167070 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the time-concentration-mortality responses of Plutella xylostella larvae to the interaction of Isaria fumosorosea with the insecticides beta-cypermethrin and Bacillus thuringiensis. Nian XG; He YR; Lu LH; Zhao R Pest Manag Sci; 2015 Feb; 71(2):216-24. PubMed ID: 24668916 [TBL] [Abstract][Full Text] [Related]
27. Greater wax moth control in apiaries can be improved by combining Bacillus thuringiensis and entrapments. Han B; Zhang L; Geng L; Jia H; Wang J; Ke L; Li A; Gao J; Wu T; Lu Y; Liu F; Song H; Wei X; Ma S; Zhan H; Wu Y; Liu Y; Wang Q; Diao Q; Zhang J; Dai P Nat Commun; 2023 Nov; 14(1):7073. PubMed ID: 37925529 [TBL] [Abstract][Full Text] [Related]
28. Transmission dynamics of Bacillus thuringiensis infecting Plodia interpunctella: a test of the mass action assumption with an insect pathogen. Knell RJ; Begon M; Thompson DJ Proc Biol Sci; 1996 Jan; 263(1366):75-81. PubMed ID: 8587898 [TBL] [Abstract][Full Text] [Related]
29. Action of Bacillus thuringiensis preparation against larch bud moth, Zeiraphera diniana (Gn.), enhanced by beta-exotoxin and DDT. Benz G Experientia; 1975 Nov; 31(11):1288-90. PubMed ID: 1204775 [TBL] [Abstract][Full Text] [Related]
30. Effects of a broad spectrum and biorational insecticides on parasitoids of the Nantucket pine tip moth (Lepidoptera: Tortricidae). McCravy KW; Dalusky MJ; Berisford CW J Econ Entomol; 2001 Feb; 94(1):112-5. PubMed ID: 11233099 [TBL] [Abstract][Full Text] [Related]
31. Suppression of diamondback moth (Lepidoptera: Plutellidae) with an entomopathogenic nematode (Rhabditida: Steinernematidae) and Bacillus thuringiensis Berliner. Baur ME; Kaya HK; Tabashnik BE; Chilcutt CF J Econ Entomol; 1998 Oct; 91(5):1089-95. PubMed ID: 9805498 [TBL] [Abstract][Full Text] [Related]
32. First Record, Distribution and Occurrence of A Protistan Entomopathogen, Yaman M; Sağlam T; Ertürk Ö Turkiye Parazitol Derg; 2023 Sep; 47(3):151-155. PubMed ID: 37724363 [TBL] [Abstract][Full Text] [Related]
33. Susceptibility of poultry biting lice (Mallophaga) to Dipel and Bacilan (Bacillus thuringiensis). Lonc E; Mazurkiewicz M; Szewczuk V Angew Parasitol; 1986 Mar; 27(1):35-7. PubMed ID: 3717688 [TBL] [Abstract][Full Text] [Related]
34. Ionizing irradiation of adults of Angoumois grain moth (Lepidoptera: Gelechiidae) and Indianmeal moth (Lepidoptera: Pyralidae) to prevent reproduction, and implications for a generic irradiation treatment for insects. Hallman GJ; Phillips TW J Econ Entomol; 2008 Aug; 101(4):1051-6. PubMed ID: 18767708 [TBL] [Abstract][Full Text] [Related]
35. Plodia interpunctella (Lepidoptera: Pyralidae): Intoxication with essential oils isolated from Lippia turbinata (Griseb.) and analysis of neuropeptides and neuropeptide receptors, putative targets for pest control. Corzo FL; Traverso L; Sterkel M; Benavente A; Ajmat MT; Ons S Arch Insect Biochem Physiol; 2020 Jul; 104(3):e21684. PubMed ID: 32329117 [TBL] [Abstract][Full Text] [Related]
36. Methyl Benzoate Is Superior to Other Natural Fumigants for Controlling the Indian Meal Moth ( Mostafiz MM; Hassan E; Acharya R; Shim JK; Lee KY Insects; 2020 Dec; 12(1):. PubMed ID: 33396500 [TBL] [Abstract][Full Text] [Related]
37. Variation in susceptibility of Helicoverpa armigera (Hübner) and Helicoverpa punctigera (Wallengren) (Lepidoptera: Noctuidae) in Australia to two Bacillus thuringiensis toxins. Bird LJ; Akhurst RJ J Invertebr Pathol; 2007 Feb; 94(2):84-94. PubMed ID: 17049552 [TBL] [Abstract][Full Text] [Related]
38. Application of insecticide dusts for the management of Indian meal moth (Lepidoptera: Pyralidae) wandering larvae under laboratory conditions. Pan X; Wang C J Econ Entomol; 2024 Jun; 117(3):1176-1184. PubMed ID: 38555593 [TBL] [Abstract][Full Text] [Related]
39. Lethal and Sublethal Effects of Some Chemical and Biological Insecticides on Tuta absoluta (Lepidoptera: Gelechiidae) Eggs and Neonates. Nozad-Bonab Z; Hejazi MJ; Iranipour S; Arzanlou M J Econ Entomol; 2017 Jun; 110(3):1138-1144. PubMed ID: 28334249 [TBL] [Abstract][Full Text] [Related]
40. The first evidence of the Indian meal moth (Plodia interpunctella) interaction with the silicone moulds. Dąbrowska A Chemosphere; 2022 Jul; 299():134451. PubMed ID: 35364077 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]