These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 984838)

  • 1. Inactivation of Clostridium botulinum toxin by ruminal microbes from cattle and sheep.
    Allison MJ; Maloy SE; Matson RR
    Appl Environ Microbiol; 1976 Nov; 32(5):685-8. PubMed ID: 984838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilities of Clostridium botulinum type B and C toxins in ruminal contents of cattle.
    Kozaki S; Notermans S
    Appl Environ Microbiol; 1980 Jul; 40(1):161-2. PubMed ID: 7406494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria.
    Kiessling KH; Pettersson H; Sandholm K; Olsen M
    Appl Environ Microbiol; 1984 May; 47(5):1070-3. PubMed ID: 6234859
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro transformation of ochratoxin A by animal microbioal floras.
    Galtier P; Alvinerie M
    Ann Rech Vet; 1976; 7(1):91-8. PubMed ID: 984716
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence of 2-aminoethylphosphonic acid in feeds, ruminal bacteria and duodenal digesta from defaunated sheep.
    Ankrah P; Loerch SC; Dehority BA
    J Anim Sci; 1989 Apr; 67(4):1061-9. PubMed ID: 2715111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro metabolism of 2,2'-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal protozoa and bacteria.
    Denholm AM; Ling JR
    Appl Environ Microbiol; 1989 Jan; 55(1):212-8. PubMed ID: 2495759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of protozoa on bacterial nitrogen recycling in the rumen.
    Koenig KM; Newbold CJ; McIntosh FM; Rode LM
    J Anim Sci; 2000 Sep; 78(9):2431-45. PubMed ID: 10985419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium botulinum type D intoxication in a dairy herd in Ontario.
    Martin S
    Can Vet J; 2003 Jun; 44(6):493-5. PubMed ID: 12839245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological characteristics of rumen microbes and relation to diet and fermentation patterns.
    Hobson PN
    Proc Nutr Soc; 1972 Sep; 31(2):135-9. PubMed ID: 4628391
    [No Abstract]   [Full Text] [Related]  

  • 10. A lack of predatory interaction between rumen ciliate protozoa and Shiga-toxin producing Escherichia coli.
    Burow LC; Gobius KS; Vanselow BA; Klieve AV
    Lett Appl Microbiol; 2005; 40(2):117-22. PubMed ID: 15644110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of glyphosate on the microbiota and production of botulinum neurotoxin during ruminal fermentation.
    Ackermann W; Coenen M; Schrödl W; Shehata AA; Krüger M
    Curr Microbiol; 2015 Mar; 70(3):374-82. PubMed ID: 25407376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of protozoa on the composition of rumen bacteria in cattle using 16S rRNA gene clone libraries.
    Ozutsumi Y; Tajima K; Takenaka A; Itabashi H
    Biosci Biotechnol Biochem; 2005 Mar; 69(3):499-506. PubMed ID: 15784977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association of methanogenic bacteria with rumen protozoa.
    Krumholz LR; Forsberg CW; Veira DM
    Can J Microbiol; 1983 Jun; 29(6):676-80. PubMed ID: 6411316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supplementing barley or rapeseed meal to dairy cows fed grass-red clover silage: I. Rumen degradability and microbial flow.
    Ahvenjärvi S; Vanhatalo A; Huhtanen P
    J Anim Sci; 2002 Aug; 80(8):2176-87. PubMed ID: 12211388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of tryptophan and related indolic compounds by ruminal bacteria, protozoa and their mixture in vitro.
    Mohammed N; Onodera R; Or-Rashid MM
    Amino Acids; 2003; 24(1-2):73-80. PubMed ID: 12624737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of suspected type D botulism in ruminants in England and Wales (2001 to 2009), associated with exposure to broiler litter.
    Payne JH; Hogg RA; Otter A; Roest HI; Livesey CT
    Vet Rec; 2011 Jun; 168(24):640. PubMed ID: 21652657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Comparison of microbial population of the rumen and their seasonal metabolism in Senegalese zebus and sheep].
    Blancou J
    Rev Elev Med Vet Pays Trop; 1978; 31(1):21-6. PubMed ID: 715289
    [No Abstract]   [Full Text] [Related]  

  • 18. DDT- 14 C-metabolism by rumen bacteria and protozoa in vitro.
    Kutches AJ; Church DC
    J Dairy Sci; 1971 Apr; 54(4):540-3. PubMed ID: 5570091
    [No Abstract]   [Full Text] [Related]  

  • 19. Urea and sodium bicarbonate metabolism by ruminants and by ruminal microorganisms.
    Brookes IM; Owens FN; Isaacs J; Brown RE; Garrigus US
    J Anim Sci; 1972 Oct; 35(4):877-82. PubMed ID: 5075831
    [No Abstract]   [Full Text] [Related]  

  • 20. The role of ciliate protozoa in the lysis of methanogenic archaea in rumen fluid.
    Newbold CJ; Ushida K; Morvan B; Fonty G; Jouany JP
    Lett Appl Microbiol; 1996 Dec; 23(6):421-5. PubMed ID: 8987902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.