These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 9848469)
1. Antioxidant inhibitors for cancer therapy. Kong Q; Lillehei KO Med Hypotheses; 1998 Nov; 51(5):405-9. PubMed ID: 9848469 [TBL] [Abstract][Full Text] [Related]
2. Antioxidant health effects of aged garlic extract. Borek C J Nutr; 2001 Mar; 131(3s):1010S-5S. PubMed ID: 11238807 [TBL] [Abstract][Full Text] [Related]
3. A threshold concept for cancer therapy. Kong Q; Beel JA; Lillehei KO Med Hypotheses; 2000 Jul; 55(1):29-35. PubMed ID: 11021322 [TBL] [Abstract][Full Text] [Related]
4. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Babizhayev MA Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059 [TBL] [Abstract][Full Text] [Related]
5. Free radicals and antioxidants in human health: current status and future prospects. Devasagayam TP; Tilak JC; Boloor KK; Sane KS; Ghaskadbi SS; Lele RD J Assoc Physicians India; 2004 Oct; 52():794-804. PubMed ID: 15909857 [TBL] [Abstract][Full Text] [Related]
6. Modulation of redox signal transduction pathways in the treatment of cancer. Greenberger JS; Kagan VE; Pearce L; Boriseniao G; Tyurina Y; Epperly MW Antioxid Redox Signal; 2001 Jun; 3(3):347-59. PubMed ID: 11491649 [TBL] [Abstract][Full Text] [Related]
7. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases. Babizhayev MA; Yegorov YE Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of antioxidants and hyperthermia enhance bleomycin-induced cytotoxicity and lipid peroxidation in Chinese hamster ovary cells. Khadir A; Verreault J; Averill DA Arch Biochem Biophys; 1999 Oct; 370(2):163-75. PubMed ID: 10510274 [TBL] [Abstract][Full Text] [Related]
9. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879 [TBL] [Abstract][Full Text] [Related]
10. [The two faces of reactive oxygen species]. Zabłocka A; Janusz M Postepy Hig Med Dosw (Online); 2008 Mar; 62():118-24. PubMed ID: 18388851 [TBL] [Abstract][Full Text] [Related]
11. Free Radicals as a Double-Edged Sword: The Cancer Preventive and Therapeutic Roles of Curcumin. Gupta N; Verma K; Nalla S; Kulshreshtha A; Lall R; Prasad S Molecules; 2020 Nov; 25(22):. PubMed ID: 33217990 [TBL] [Abstract][Full Text] [Related]
12. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Slemmer JE; Shacka JJ; Sweeney MI; Weber JT Curr Med Chem; 2008; 15(4):404-14. PubMed ID: 18288995 [TBL] [Abstract][Full Text] [Related]
13. A review of the interaction among dietary antioxidants and reactive oxygen species. Seifried HE; Anderson DE; Fisher EI; Milner JA J Nutr Biochem; 2007 Sep; 18(9):567-79. PubMed ID: 17360173 [TBL] [Abstract][Full Text] [Related]
14. α-Tocopherol mediated amelioration of camptothecin-induced free radical damage to avert cardiotoxicities. Singh K; Bhori M; Marar T Hum Exp Toxicol; 2015 Apr; 34(4):380-9. PubMed ID: 25304969 [TBL] [Abstract][Full Text] [Related]
15. Reduction-oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Yahyapour R; Motevaseli E; Rezaeyan A; Abdollahi H; Farhood B; Cheki M; Rezapoor S; Shabeeb D; Musa AE; Najafi M; Villa V Clin Transl Oncol; 2018 Aug; 20(8):975-988. PubMed ID: 29318449 [TBL] [Abstract][Full Text] [Related]
16. Antioxidant therapy in acute central nervous system injury: current state. Gilgun-Sherki Y; Rosenbaum Z; Melamed E; Offen D Pharmacol Rev; 2002 Jun; 54(2):271-84. PubMed ID: 12037143 [TBL] [Abstract][Full Text] [Related]
17. Free radicals and lipid peroxidation mediated injury in burn trauma: the role of antioxidant therapy. Horton JW Toxicology; 2003 Jul; 189(1-2):75-88. PubMed ID: 12821284 [TBL] [Abstract][Full Text] [Related]
18. Mitochondrial superoxide dismutase: a promising target for new anticancer therapies. Pani G; Colavitti R; Bedogni B; Fusco S; Ferraro D; Borrello S; Galeotti T Curr Med Chem; 2004 May; 11(10):1299-308. PubMed ID: 15134521 [TBL] [Abstract][Full Text] [Related]
19. Antioxidants in the Practice of Medicine; What Should the Clinician Know? Whayne TF; Saha SP; Mukherjee D Cardiovasc Hematol Disord Drug Targets; 2016; 16(1):13-20. PubMed ID: 27296476 [TBL] [Abstract][Full Text] [Related]
20. Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Matés JM Toxicology; 2000 Nov; 153(1-3):83-104. PubMed ID: 11090949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]