BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 984848)

  • 1. Some effects of Ca2+, Mg2+ , and Mn2+ on the ultrastructure, light-scattering properties, and malic enzyme activity of adrenal cortex mitochondria.
    Pfeiffer DR; Kuo TH; Tchen TT
    Arch Biochem Biophys; 1976 Oct; 176(2):556-63. PubMed ID: 984848
    [No Abstract]   [Full Text] [Related]  

  • 2. The activation of adrenal cortex mitochondrial malic enzyme by Ca2+ and Mg2+.
    Pfeiffer DR; Tchen TT
    Biochemistry; 1975 Jan; 14(1):89-96. PubMed ID: 1167337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial malic enzymes. I. Submitochondrial localization and purification and properties of the NAD(P)+-dependent enzyme from adrenal cortex.
    Mandella RD; Sauer LA
    J Biol Chem; 1975 Aug; 250(15):5877-84. PubMed ID: 238989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Different efficiency of Mn2+, Ca2+ and Mg2+ ions, in the reaction of the pyruvate dehydrogenase complex of adrenal glands with thiamine pyrophosphate].
    Strumilo SA
    Vopr Med Khim; 1983; 29(1):94-7. PubMed ID: 6836967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of Ca 2+ in control of malic enzyme activity in bovine adrenal cortex mitochondria.
    Pfeiffer DR; Tchen TT
    Biochem Biophys Res Commun; 1973 Feb; 50(3):807-13. PubMed ID: 4144008
    [No Abstract]   [Full Text] [Related]  

  • 6. [Reactivation of the partially phosphorylated pyruvate dehydrogenase complex from bovine adrenal glands].
    Strumilo SA
    Biokhimiia; 1983 Nov; 48(11):1879-83. PubMed ID: 6661460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP inhibition competes with activating cations in modulating the NAD(P)(+)-malic enzyme activity in the mitochondrial matrix of Xenopus laevis oocytes.
    Petrucci D; Cesare P
    Int J Biochem; 1990; 22(2):137-41. PubMed ID: 2332098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of malic enzyme in bovine adrenal cortex mitochondria.
    Simpson ER; Cammer W; Estabrook RW
    Biochem Biophys Res Commun; 1968 Apr; 31(1):113-8. PubMed ID: 4384910
    [No Abstract]   [Full Text] [Related]  

  • 9. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide phosphate specific malic enzyme, depending on whether magnesium ion or manganese ion serves as divalent cation.
    Brown DA; Cook RA
    Biochemistry; 1981 Apr; 20(9):2503-12. PubMed ID: 7016178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Purification and properties of NADP-specific malate dehydrogenase from bovine adrenal cortex mitochondria].
    Senkevich SB
    Biokhimiia; 1988 Nov; 53(11):1783-90. PubMed ID: 3251546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of soluble cytochromes P-450 from bovine adrenocortical mitochondria.
    Hall PF
    Ann N Y Acad Sci; 1973; 212():195-207. PubMed ID: 4532479
    [No Abstract]   [Full Text] [Related]  

  • 12. Preparation and properties of mitochondrial cytochrome P-450 from bovine adrenal cortex.
    Mitani F; Ando N; Horie S
    Ann N Y Acad Sci; 1973; 212():208-26. PubMed ID: 4375420
    [No Abstract]   [Full Text] [Related]  

  • 13. Nicotinamide-adenine dinucleotide-linked "malic" enzyme in flight muscle of the tse-tse fly (Glossina) and other insects.
    Hoek JB; Pearson DJ; Olembo NK
    Biochem J; 1976 Nov; 160(2):253-62. PubMed ID: 12751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The topology of the mitochondrial 11beta-hydroxylase system in bovine adrenal cortex.
    Rydström J; Gustafsson JA; Ingelman-Sundberg M; Montelius J; Ernster L
    Biochem Biophys Res Commun; 1976 Dec; 73(3):555-61. PubMed ID: 1008873
    [No Abstract]   [Full Text] [Related]  

  • 15. Role of metal cofactors in enzyme regulation. Differences in the regulatory properties of the Escherichia coli nicotinamide adenine dinucleotide specific malic enzyme depending on whether Mg2+ or Mn2+ serves as divalent cation.
    Milne JA; Cook RA
    Biochemistry; 1979 Aug; 18(16):3604-10. PubMed ID: 224913
    [No Abstract]   [Full Text] [Related]  

  • 16. The detection of different states of the P-450 cytochromes in adrenal mitochondria: changes induced by ACTH.
    Jefcoate CR; Simpson ER; Boyd GS; Brownie AC; Orme-Johnson WH
    Ann N Y Acad Sci; 1973; 212():243-61. PubMed ID: 4375421
    [No Abstract]   [Full Text] [Related]  

  • 17. Mitochondrial malic enzyme: the source of reduced nicotinamide adenine dinucleotide phosphate for steroid hydroxylation in bovine adrenal cortex mitochondria.
    Simpson ER; Estabrook RW
    Arch Biochem Biophys; 1969 Jan; 129(1):384-95. PubMed ID: 4178715
    [No Abstract]   [Full Text] [Related]  

  • 18. [Properties of adrenocortical isocitrate dehydrogenase].
    Mikosha AS; Monissarenko VP; Bychkovskaia LA
    Vopr Med Khim; 1981; 27(6):736-9. PubMed ID: 7336646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zonation of the adrenal cortex. II. Effect of BSA on coupling efficiency of mitochondria isolated from the zona glomerulosa of the bovine adrenal cortex.
    Wakabayashi T; Asano M; Kurono C; Ozawa T; Kishimoto H
    Acta Pathol Jpn; 1976 Jul; 26(4):457-66. PubMed ID: 983708
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible mechanism for the transfer of cytosol-generated NADPH to the mitochondrial mixed-function oxidases in bovine adrenal cortex: a malate shuttle.
    Simpson ER; Estabrook RW
    Arch Biochem Biophys; 1968 Sep; 126(3):977-8. PubMed ID: 4386814
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.