These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
476 related articles for article (PubMed ID: 9850059)
21. Mutation analysis of the transforming growth factor-beta type II receptor in human cell lines resistant to growth inhibition by transforming growth factor-beta. Vincent F; Nagashima M; Takenoshita S; Khan MA; Gemma A; Hagiwara K; Bennett WP Oncogene; 1997 Jul; 15(1):117-22. PubMed ID: 9233784 [TBL] [Abstract][Full Text] [Related]
22. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-beta in human umbilical vein endothelial cells. Ota T; Fujii M; Sugizaki T; Ishii M; Miyazawa K; Aburatani H; Miyazono K J Cell Physiol; 2002 Dec; 193(3):299-318. PubMed ID: 12384983 [TBL] [Abstract][Full Text] [Related]
23. Smad4 silencing in pancreatic cancer cell lines using stable RNA interference and gene expression profiles induced by transforming growth factor-beta. Jazag A; Ijichi H; Kanai F; Imamura T; Guleng B; Ohta M; Imamura J; Tanaka Y; Tateishi K; Ikenoue T; Kawakami T; Arakawa Y; Miyagishi M; Taira K; Kawabe T; Omata M Oncogene; 2005 Jan; 24(4):662-71. PubMed ID: 15592526 [TBL] [Abstract][Full Text] [Related]
24. Transforming growth factor beta receptor type II inactivation promotes the establishment and progression of colon cancer. Biswas S; Chytil A; Washington K; Romero-Gallo J; Gorska AE; Wirth PS; Gautam S; Moses HL; Grady WM Cancer Res; 2004 Jul; 64(14):4687-92. PubMed ID: 15256431 [TBL] [Abstract][Full Text] [Related]
25. Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Moore PS; Orlandini S; Zamboni G; Capelli P; Rigaud G; Falconi M; Bassi C; Lemoine NR; Scarpa A Br J Cancer; 2001 Jan; 84(2):253-62. PubMed ID: 11161385 [TBL] [Abstract][Full Text] [Related]
26. Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Muñoz NM; Upton M; Rojas A; Washington MK; Lin L; Chytil A; Sozmen EG; Madison BB; Pozzi A; Moon RT; Moses HL; Grady WM Cancer Res; 2006 Oct; 66(20):9837-44. PubMed ID: 17047044 [TBL] [Abstract][Full Text] [Related]
27. Genetic alterations of the TGF-beta signaling pathway in colorectal cancer cell lines: a novel mutation in Smad3 associated with the inactivation of TGF-beta-induced transcriptional activation. Ku JL; Park SH; Yoon KA; Shin YK; Kim KH; Choi JS; Kang HC; Kim IJ; Han IO; Park JG Cancer Lett; 2007 Mar; 247(2):283-92. PubMed ID: 16828225 [TBL] [Abstract][Full Text] [Related]
28. A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-beta1 (TGF-beta1) and its signaling pathway. Watanabe Y; Kinoshita A; Yamada T; Ohta T; Kishino T; Matsumoto N; Ishikawa M; Niikawa N; Yoshiura K J Hum Genet; 2002; 47(9):478-83. PubMed ID: 12202987 [TBL] [Abstract][Full Text] [Related]
29. The conventional transforming growth factor-beta (TGF-beta) receptor type I is not required for TGF-beta 1 signaling in a human prostate cancer cell line, LNCaP. Kim IY; Zelner DJ; Lee C Exp Cell Res; 1998 May; 241(1):151-60. PubMed ID: 9633523 [TBL] [Abstract][Full Text] [Related]
30. Systematic analysis of the TGF-beta-Smad signaling pathway in gastrointestinal cancer cells. Ijichi H; Ikenoue T; Kato N; Mitsuno Y; Togo G; Kato J; Kanai F; Shiratori Y; Omata M Biochem Biophys Res Commun; 2001 Nov; 289(2):350-7. PubMed ID: 11716479 [TBL] [Abstract][Full Text] [Related]
31. A dominant negative mutation of transforming growth factor-beta receptor type II gene in microsatellite stable oesophageal carcinoma. Tanaka S; Mori M; Mafune K; Ohno S; Sugimachi K Br J Cancer; 2000 May; 82(9):1557-60. PubMed ID: 10789724 [TBL] [Abstract][Full Text] [Related]
32. Differences in Smad4 expression in human papillomavirus type 16-positive and human papillomavirus type 16-negative head and neck squamous cell carcinoma. Báez A; Cantor A; Fonseca S; Marcos-Martinez M; Mathews LA; Muro-Cacho CA; Muñoz-Antonia T Clin Cancer Res; 2005 May; 11(9):3191-7. PubMed ID: 15867212 [TBL] [Abstract][Full Text] [Related]
33. Heterogeneous transforming growth factor (TGF)-beta unresponsiveness and loss of TGF-beta receptor type II expression caused by histone deacetylation in lung cancer cell lines. Osada H; Tatematsu Y; Masuda A; Saito T; Sugiyama M; Yanagisawa K; Takahashi T Cancer Res; 2001 Nov; 61(22):8331-9. PubMed ID: 11719467 [TBL] [Abstract][Full Text] [Related]
34. Smad4 dependency defines two classes of transforming growth factor {beta} (TGF-{beta}) target genes and distinguishes TGF-{beta}-induced epithelial-mesenchymal transition from its antiproliferative and migratory responses. Levy L; Hill CS Mol Cell Biol; 2005 Sep; 25(18):8108-25. PubMed ID: 16135802 [TBL] [Abstract][Full Text] [Related]
35. Transforming growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Chen T; Triplett J; Dehner B; Hurst B; Colligan B; Pemberton J; Graff JR; Carter JH Cancer Res; 2001 Jun; 61(12):4679-82. PubMed ID: 11406536 [TBL] [Abstract][Full Text] [Related]
36. A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-beta in pancreatic carcinogenesis. Jonckheere N; Perrais M; Mariette C; Batra SK; Aubert JP; Pigny P; Van Seuningen I Oncogene; 2004 Jul; 23(34):5729-38. PubMed ID: 15184872 [TBL] [Abstract][Full Text] [Related]
37. Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Nicolás FJ; Hill CS Oncogene; 2003 Jun; 22(24):3698-711. PubMed ID: 12802277 [TBL] [Abstract][Full Text] [Related]
38. Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. Böttinger EP; Jakubczak JL; Roberts IS; Mumy M; Hemmati P; Bagnall K; Merlino G; Wakefield LM EMBO J; 1997 May; 16(10):2621-33. PubMed ID: 9184209 [TBL] [Abstract][Full Text] [Related]
39. Restoration of SMAD4 by gene therapy reverses the invasive phenotype in pancreatic adenocarcinoma cells. Duda DG; Sunamura M; Lefter LP; Furukawa T; Yokoyama T; Yatsuoka T; Abe T; Inoue H; Motoi F; Egawa S; Matsuno S; Horii A Oncogene; 2003 Oct; 22(44):6857-64. PubMed ID: 14534532 [TBL] [Abstract][Full Text] [Related]
40. [Alterations in DPC4 gene in pancreatic cancers]. Gu L; Chen J; Cui Q Zhonghua Zhong Liu Za Zhi; 2001 Jul; 23(4):293-5. PubMed ID: 11783110 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]