These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 9851048)

  • 41. Structure, expression, and protein engineering of the pyruvate dehydrogenase complex of Escherichia coli.
    Guest JR; Angier SJ; Russell GC
    Ann N Y Acad Sci; 1989; 573():76-99. PubMed ID: 2699406
    [No Abstract]   [Full Text] [Related]  

  • 42. Nucleotide sequence of the regulatory region of the gene pbpB of Escherichia coli.
    Gómez MJ; Fluoret B; van Heijenoort J; Ayala JA
    Nucleic Acids Res; 1990 May; 18(9):2813. PubMed ID: 2187182
    [No Abstract]   [Full Text] [Related]  

  • 43. Aspartokinase II from Bacillus subtilis is degraded in response to nutrient limitation.
    Graves LM; Switzer RL
    J Biol Chem; 1990 Sep; 265(25):14947-55. PubMed ID: 2168395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetics of bacterial stress response and its applications.
    Matin A
    Ann N Y Acad Sci; 1992 Oct; 665():1-15. PubMed ID: 1329598
    [No Abstract]   [Full Text] [Related]  

  • 45. The effect of gene position, gene dosage and a regulatory mutation on the temporal sequence of enzyme synthesis accompanying outgrowth of Bacillus subtilis spores.
    Yeh EC; Steinberg W
    Mol Gen Genet; 1978 Jan; 158(3):287-96. PubMed ID: 203842
    [No Abstract]   [Full Text] [Related]  

  • 46. A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes.
    Gelfand MS; Mironov AA; Jomantas J; Kozlov YI; Perumov DA
    Trends Genet; 1999 Nov; 15(11):439-42. PubMed ID: 10529804
    [No Abstract]   [Full Text] [Related]  

  • 47. Feedback inhibition and repression of aspartokinase activity in Escherichia coli.
    STADTMAN ER; COHEN GN; LEBRAS G
    Ann N Y Acad Sci; 1961 Nov; 94():952-9. PubMed ID: 13916055
    [No Abstract]   [Full Text] [Related]  

  • 48. Gene-expression tools for the metabolic engineering of bacteria.
    Keasling JD
    Trends Biotechnol; 1999 Nov; 17(11):452-60. PubMed ID: 10511704
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering 'cell robots' for parallel and highly sensitive screening of biomolecules under in vivo conditions.
    Song L; Zeng AP
    Sci Rep; 2017 Nov; 7(1):15145. PubMed ID: 29123248
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Riboswitches as therapeutic targets: promise of a new era of antibiotics.
    Ellinger E; Chauvier A; Romero RA; Liu Y; Ray S; Walter NG
    Expert Opin Ther Targets; 2023; 27(6):433-445. PubMed ID: 37364239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Discovering riboswitches: the past and the future.
    Kavita K; Breaker RR
    Trends Biochem Sci; 2023 Feb; 48(2):119-141. PubMed ID: 36150954
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Riboswitch-Driven Era of New Antibacterials.
    Giarimoglou N; Kouvela A; Maniatis A; Papakyriakou A; Zhang J; Stamatopoulou V; Stathopoulos C
    Antibiotics (Basel); 2022 Sep; 11(9):. PubMed ID: 36140022
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep scanning lysine metabolism in
    Bassalo MC; Garst AD; Choudhury A; Grau WC; Oh EJ; Spindler E; Lipscomb T; Gill RT
    Mol Syst Biol; 2018 Nov; 14(11):e8371. PubMed ID: 30478237
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of lysine recognition and specificity of the Bacillus subtilis L box riboswitch.
    Wilson-Mitchell SN; Grundy FJ; Henkin TM
    Nucleic Acids Res; 2012 Jul; 40(12):5706-17. PubMed ID: 22416067
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis and manipulation of aspartate pathway genes for L-lysine overproduction from methanol by Bacillus methanolicus.
    Nærdal I; Netzer R; Ellingsen TE; Brautaset T
    Appl Environ Microbiol; 2011 Sep; 77(17):6020-6. PubMed ID: 21724876
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs.
    Deigan KE; Ferré-D'Amaré AR
    Acc Chem Res; 2011 Dec; 44(12):1329-38. PubMed ID: 21615107
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of ArgP and Lrp as transcriptional regulators of lysP, the gene encoding the specific lysine permease of Escherichia coli.
    Ruiz J; Haneburger I; Jung K
    J Bacteriol; 2011 May; 193(10):2536-48. PubMed ID: 21441513
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Folding of the lysine riboswitch: importance of peripheral elements for transcriptional regulation.
    Blouin S; Chinnappan R; Lafontaine DA
    Nucleic Acids Res; 2011 Apr; 39(8):3373-87. PubMed ID: 21169337
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amino acid recognition and gene regulation by riboswitches.
    Serganov A; Patel DJ
    Biochim Biophys Acta; 2009; 1789(9-10):592-611. PubMed ID: 19619684
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A switch in time: detailing the life of a riboswitch.
    Garst AD; Batey RT
    Biochim Biophys Acta; 2009; 1789(9-10):584-91. PubMed ID: 19595806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.