These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 98515)

  • 1. Aerobic growth thermograms of Streptococcus lactis obtained with a complex medium containing glucose.
    Monk PR
    J Bacteriol; 1978 Aug; 135(2):373-8. PubMed ID: 98515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose metabolism in Lactococcus lactis MG1363 under different aeration conditions: requirement of acetate to sustain growth under microaerobic conditions.
    Nordkvist M; Jensen NB; Villadsen J
    Appl Environ Microbiol; 2003 Jun; 69(6):3462-8. PubMed ID: 12788751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Joint culturing of Streptococcus lactis, strain MGU with Proteus vulgaris and Bacillus mesentericus].
    Kozlova IuI; Grushina VA; Baranova IP; Egorov NS
    Mikrobiologiia; 1990; 59(4):704-7. PubMed ID: 2124650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis.
    Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y
    J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of glucose and nitrogen source concentration on batch fermentation kinetics of Lactococcus lactis under hemin-stimulated respirative condition.
    Razvi A; Zhang Z; Lan CQ
    Biotechnol Prog; 2008; 24(4):852-8. PubMed ID: 19194896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of hemin effect on lactate reduction in Lactococcus lactis.
    Nagayasu M; Wardani AK; Nagahisa K; Shimizu H; Shioya S
    J Biosci Bioeng; 2007 Jun; 103(6):529-34. PubMed ID: 17630124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between Streptococcus lactis and Aspergillus flavus on production of aflatoxin.
    Coallier-Ascah J; Idziak ES
    Appl Environ Microbiol; 1985 Jan; 49(1):163-7. PubMed ID: 3919639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi steady state growth of Lactococcus lactis in glucose-limited acceleration stat (A-stat) cultures.
    Adamberg K; Lahtvee PJ; Valgepea K; Abner K; Vilu R
    Antonie Van Leeuwenhoek; 2009 Mar; 95(3):219-26. PubMed ID: 19184516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis.
    Fordyce AM; Crow VL; Thomas TD
    Appl Environ Microbiol; 1984 Aug; 48(2):332-7. PubMed ID: 6435521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relation of growth of Streptococcus lactis and Streptococcus cremoris to amino acid transport.
    Poolman B; Konings WN
    J Bacteriol; 1988 Feb; 170(2):700-7. PubMed ID: 3123462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of the initial pH value of the medium on the growth of Streptococcus lactis and the biosynthesis of nisin].
    Egorov NS; Baranova IP; Grushina VA
    Antibiotiki; 1976 Jun; 21(6):499-501. PubMed ID: 7995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nutritional requirements and media development for Lactococcus lactis IL1403.
    Aller K; Adamberg K; Timarova V; Seiman A; Feštšenko D; Vilu R
    Appl Microbiol Biotechnol; 2014 Jul; 98(13):5871-81. PubMed ID: 24626960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The metabolic network of Lactococcus lactis: distribution of (14)C-labeled substrates between catabolic and anabolic pathways.
    Novák L; Loubiere P
    J Bacteriol; 2000 Feb; 182(4):1136-43. PubMed ID: 10648541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aeration and fermentation strategies on nisin production.
    Jiang L; Liu Y; Yan G; Cui Y; Cheng Q; Zhang Z; Meng Q; Teng L; Ren X
    Biotechnol Lett; 2015 Oct; 37(10):2039-45. PubMed ID: 26087947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of waste materials for Lactococcus lactis development.
    Rodríguez N; Torrado A; Cortés S; Domínguez JM
    J Sci Food Agric; 2010 Aug; 90(10):1726-34. PubMed ID: 20564439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Joint Effect of pH Gradient and Glucose Feeding on the Growth Kinetics of
    Malvido MC; González EA; Bendaña Jácome RJ; Guerra NP
    Pol J Microbiol; 2019; 68(2):269-280. PubMed ID: 31257793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is the glycolytic flux in Lactococcus lactis primarily controlled by the redox charge? Kinetics of NAD(+) and NADH pools determined in vivo by 13C NMR.
    Neves AR; Ventura R; Mansour N; Shearman C; Gasson MJ; Maycock C; Ramos A; Santos H
    J Biol Chem; 2002 Aug; 277(31):28088-98. PubMed ID: 12011086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End products and fermentation balances for lactic streptococci grown aerobically on low concentrations of glucose.
    Brown WV; Collins EB
    Appl Environ Microbiol; 1977 Jan; 33(1):38-42. PubMed ID: 836024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth associated exopolysaccharide expression in Lactococcus lactis subspecies cremoris Ropy352.
    Knoshaug EP; Ahlgren JA; Trempy JE
    J Dairy Sci; 2000 Apr; 83(4):633-40. PubMed ID: 10791777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose/citrate cometabolism in Lactococcus lactis subsp. lactis biovar diacetylactis with impaired alpha-acetolactate decarboxylase.
    Curic M; de Richelieu M; Henriksen CM; Jochumsen KV; Villadsen J; Nilsson D
    Metab Eng; 1999 Oct; 1(4):291-8. PubMed ID: 10937822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.