These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 98516)

  • 21. Steric hindrance regulation of the Pseudomonas aeruginosa amidase operon.
    Norman RA; Poh CL; Pearl LH; O'Hara BP; Drew RE
    J Biol Chem; 2000 Sep; 275(39):30660-7. PubMed ID: 10893220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step affinity purification of amidase from mutant strains of Pseudomonas aeruginosa.
    Domingos A; Karmali A; Brown PR
    Biochimie; 1989; 71(11-12):1179-84. PubMed ID: 2517478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monoclonal antibodies recognize conformational epitopes on wild-type and recombinant mutant amidases from pseudomonas aeruginosa.
    Martins S; Lourenço S; Karmali A; Serralheiro ML
    Mol Biotechnol; 2007 Oct; 37(2):136-45. PubMed ID: 17914174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and immunological comparison of aliphatic amidases produced by Pseudomonas species.
    Clarke PH
    J Gen Microbiol; 1972 Jul; 71(2):241-57. PubMed ID: 4625925
    [No Abstract]   [Full Text] [Related]  

  • 25. Characterization of monoclonal antibodies against altered (T103I) amidase from Pseudomonas aeruginosa.
    Martins S; Karmali A; Andrade J; Custódio A; Serralheiro ML
    Mol Biotechnol; 2005 Jul; 30(3):207-19. PubMed ID: 15988046
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of nitrogen limitation on catabolite repression of amidase, histidase and urocanase in Pseudomonas aeruginosa.
    Potts JR; Clarke PH
    J Gen Microbiol; 1976 Apr; 93(2):377-87. PubMed ID: 6623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO.
    Wolff JA; MacGregor CH; Eisenberg RC; Phibbs PV
    J Bacteriol; 1991 Aug; 173(15):4700-6. PubMed ID: 1906870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substitution of Glu-59 by Val in amidase from Pseudomonas aeruginosa results in a catalytically inactive enzyme.
    Karmali A; Tata R; Brown PR
    Mol Biotechnol; 2000 Sep; 16(1):5-16. PubMed ID: 11098465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of the aliphatic amidase from Pseudomonas aeruginosa by urea and related compounds.
    Gregoriou M; Brown PR
    Eur J Biochem; 1979 May; 96(1):101-8. PubMed ID: 110589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amino acid substitution in an amidase produced by an acetanilide-utilizing mutant of Pseudomonas aeruginosa.
    Brown PR; Clarke PH
    J Gen Microbiol; 1972 Apr; 70(2):287-8. PubMed ID: 4625808
    [No Abstract]   [Full Text] [Related]  

  • 31. Evolution in action.
    Betz JL; Brown PR; Smyth MJ; Clarke PH
    Nature; 1974 Feb; 247(5439):261-4. PubMed ID: 4206474
    [No Abstract]   [Full Text] [Related]  

  • 32. The construction in vitro of derivatives of bacteriophage lambda carrying the amidase genes of Pseudomonas aeruginosa.
    Drew RE; Clarke PH; Brammar WJ
    Mol Gen Genet; 1980 Jan; 177(2):311-20. PubMed ID: 6245342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mutations in a regulator gene allowing Pseudomonas aeruginosa 8602 to grow on butyramide.
    Brown JE; Clarke PH
    J Gen Microbiol; 1970 Dec; 64(3):329-42. PubMed ID: 4995910
    [No Abstract]   [Full Text] [Related]  

  • 34. Pseudomonas aeruginosa amidase: aggregation in recombinant Escherichia coli.
    Borges P; Pacheco R; Karmali A
    Biotechnol J; 2011 Jul; 6(7):888-97. PubMed ID: 21567956
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic properties of wild-type and altered recombinant amidases by the use of ion-selective electrode assay method.
    Martins S; Karmali A; Serralheiro ML
    Anal Biochem; 2006 Aug; 355(2):232-9. PubMed ID: 16792995
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural adaptation to selective pressure for altered ligand specificity in the Pseudomonas aeruginosa amide receptor, amiC.
    O'Hara BP; Wilson SA; Lee AW; Roe SM; Siligardi G; Drew RE; Pearl LH
    Protein Eng; 2000 Feb; 13(2):129-32. PubMed ID: 10708652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical and genetic studies with regulator mutants of the Pseudomonas aeruginosa 8602 amidase system.
    Brammar WJ; Clarke PH; Skinner AJ
    J Gen Microbiol; 1967 Apr; 47(1):87-102. PubMed ID: 4962193
    [No Abstract]   [Full Text] [Related]  

  • 38. Transcription antitermination regulation of the Pseudomonas aeruginosa amidase operon.
    Wilson SA; Wachira SJ; Norman RA; Pearl LH; Drew RE
    EMBO J; 1996 Nov; 15(21):5907-16. PubMed ID: 8918468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Burkholderia genome analysis reveals new enzymes belonging to the nitrilase superfamily. The amidase of Burkholderia cepacia (hospital isolate).
    Novo C; Tata R; Clemente A; Brown PR
    Int J Biol Macromol; 2003 Dec; 33(4-5):175-82. PubMed ID: 14607362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crystallization of and preliminary X-ray data for the negative regulator (AmiC) of the amidase operon of Pseudomonas aeruginosa.
    Wilson SA; Chayen NE; Hemmings AM; Drew RE; Pearl LH
    J Mol Biol; 1991 Dec; 222(4):869-71. PubMed ID: 1762155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.