These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1048 related articles for article (PubMed ID: 9851831)
21. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Larsson C; Påhlman IL; Ansell R; Rigoulet M; Adler L; Gustafsson L Yeast; 1998 Mar; 14(4):347-57. PubMed ID: 9559543 [TBL] [Abstract][Full Text] [Related]
22. Isolation and characterization of adipose tissue glycerol-3-phosphate dehydrogenase. Koekemoer TC; Litthauer D; Oelofsen W Int J Biochem Cell Biol; 1995 Jun; 27(6):625-32. PubMed ID: 7671141 [TBL] [Abstract][Full Text] [Related]
23. Chiral inversion of RS-8359: a selective and reversible MAO-A inhibitor via oxido-reduction of keto-alcohol. Itoh K; Hoshino K; Endo A; Asakawa T; Yamakami K; Noji C; Kosaka T; Tanaka Y Chirality; 2006 Sep; 18(9):698-706. PubMed ID: 16823812 [TBL] [Abstract][Full Text] [Related]
24. Isocitrate dehydrogenase: A NADPH-generating enzyme in the lumen of the endoplasmic reticulum. Margittai E; Bánhegyi G Arch Biochem Biophys; 2008 Mar; 471(2):184-90. PubMed ID: 18201546 [TBL] [Abstract][Full Text] [Related]
25. Optical spectroscopy of nicotinoprotein alcohol dehydrogenase from Amycolatopsis methanolica: a comparison with horse liver alcohol dehydrogenase and UDP-galactose epimerase. Piersma SR; Visser AJ; de Vries S; Duine JA Biochemistry; 1998 Mar; 37(9):3068-77. PubMed ID: 9485460 [TBL] [Abstract][Full Text] [Related]
26. 1-Hydroxyethyl radical formation during NADPH- and NADH-dependent oxidation of ethanol by human liver microsomes. Rao DN; Yang MX; Lasker JM; Cederbaum AI Mol Pharmacol; 1996 May; 49(5):814-21. PubMed ID: 8622631 [TBL] [Abstract][Full Text] [Related]
27. Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Påhlman IL; Gustafsson L; Rigoulet M; Larsson C Yeast; 2001 May; 18(7):611-20. PubMed ID: 11329172 [TBL] [Abstract][Full Text] [Related]
29. [Possible mechanisms of regulating glucose-6-phosphate dehydrogenase activity by an excess of substrate and coenzyme]. Rogozhin VV Bioorg Khim; 1996 Aug; 22(8):575-9. PubMed ID: 8984999 [TBL] [Abstract][Full Text] [Related]
30. [Activation of the external pathway of NADH oxidation in mitochondria at decreased pH]. Agureev AP; Altukhov ND; Mokhova EN; Savel'ev IA Biokhimiia; 1981 Nov; 46(11):1945-56. PubMed ID: 7317523 [TBL] [Abstract][Full Text] [Related]
31. Purification and characterization of Azotobacter vinelandii glucose-6-phosphate dehydrogenase: dual coenzyme specificity. Anderson BM; Anderson CD Arch Biochem Biophys; 1995 Aug; 321(1):94-100. PubMed ID: 7639541 [TBL] [Abstract][Full Text] [Related]
32. ATP-driven transhydrogenation and ionization of water in a reconstituted glyceraldehyde-3-phosphate dehydrogenases (phosphorylating and non-phosphorylating) model system. Serrano A; Mateos MI; Losada M Biochem Biophys Res Commun; 1993 Dec; 197(3):1348-56. PubMed ID: 8280152 [TBL] [Abstract][Full Text] [Related]
34. Reduction of arsenate to arsenite by human erythrocyte lysate and rat liver cytosol - characterization of a glutathione- and NAD-dependent arsenate reduction linked to glycolysis. Németi B; Gregus Z Toxicol Sci; 2005 Jun; 85(2):847-58. PubMed ID: 15788720 [TBL] [Abstract][Full Text] [Related]
35. [Peculiarities of the regulation of adrenal oxoglutarate dehydrogenase complex by NADH and adenosine diphosphate]. Strumilo SA; Taranda NI; Vinogradov VV Biokhimiia; 1982 May; 47(5):724-32. PubMed ID: 7093374 [TBL] [Abstract][Full Text] [Related]
36. Modification of NAD-dependent isocitrate dehydrogenase by the 2',3'-dialdehyde derivatives of NAD, NADH, NADP, and NADPH. Saha A; Colman RF Arch Biochem Biophys; 1988 Aug; 264(2):665-77. PubMed ID: 3401017 [TBL] [Abstract][Full Text] [Related]
37. Reductive modification and nonreductive activation of purified spinach chloroplast NADP-dependent glyceraldehyde-3-phosphate dehydrogenase. Baalmann E; Backhausen JE; Rak C; Vetter S; Scheibe R Arch Biochem Biophys; 1995 Dec; 324(2):201-8. PubMed ID: 8554310 [TBL] [Abstract][Full Text] [Related]
38. Cadmium-dependent enzyme activity alteration is not imputable to lipid peroxidation. Casalino E; Calzaretti G; Sblano C; Landriscina C Arch Biochem Biophys; 2000 Nov; 383(2):288-95. PubMed ID: 11185565 [TBL] [Abstract][Full Text] [Related]
39. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors. Olavarría K; Valdés D; Cabrera R FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976 [TBL] [Abstract][Full Text] [Related]
40. Purification and characterization of glucose-6-phosphate dehydrogenase from Cryptococcus neoformans: identification as "nothing dehydrogenase". Niehaus WG; Mallett TC Arch Biochem Biophys; 1994 Sep; 313(2):304-9. PubMed ID: 8080277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]