BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 9851900)

  • 1. Patterned activation of unpaired median neurons during fictive crawling in manduca sexta larvae.
    Johnston RM; Consoulas C; Pfl ger H ; Levine RB
    J Exp Biol; 1999 Jan; 202 (Pt 2)():103-13. PubMed ID: 9851900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crawling motor patterns induced by pilocarpine in isolated larval nerve cords of Manduca sexta.
    Johnston RM; Levine RB
    J Neurophysiol; 1996 Nov; 76(5):3178-95. PubMed ID: 8930265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thoracic leg motoneurons in the isolated CNS of adult Manduca produce patterned activity in response to pilocarpine, which is distinct from that produced in larvae.
    Johnston RM; Levine RB
    Invert Neurosci; 2002 Oct; 4(4):175-92. PubMed ID: 12488968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Descending unpaired median neurons with bilaterally symmetrical axons in the suboesophageal ganglion of Manduca sexta larvae.
    Cholewa J; Pflüger HJ
    Zoology (Jena); 2009; 112(4):251-62. PubMed ID: 19423308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate of abdominal ventral unpaired median cells during metamorphosis of the hawkmoth, Manduca sexta.
    Pflüger HJ; Witten JL; Levine RB
    J Comp Neurol; 1993 Sep; 335(4):508-22. PubMed ID: 8227533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steroid hormone activation of wandering in the isolated nervous system of Manduca sexta.
    Miller JE; Levine RB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Oct; 192(10):1049-62. PubMed ID: 16788816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postembryonic development of centrally generated flight motor patterns in the hawkmoth, Manduca sexta.
    Vierk R; Duch C; Pflüger HJ
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Jan; 196(1):37-50. PubMed ID: 19924416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Projection patterns of posterior dorsal unpaired median neurons of the locust subesophageal ganglion.
    Bräunig P; Burrows M
    J Comp Neurol; 2004 Oct; 478(2):164-75. PubMed ID: 15349977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of efferent neuromodulatory neurons to rhythmical leg motor activity in the locust.
    Baudoux S; Duch C; Morris OT
    J Neurophysiol; 1998 Jan; 79(1):361-70. PubMed ID: 9425205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and activation of different types of octopaminergic DUM neurons in the locust.
    Duch C; Mentel T; Pflüger HJ
    J Comp Neurol; 1999 Jan; 403(1):119-34. PubMed ID: 10075447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Descending octopaminergic neurons modulate sensory-evoked activity of thoracic motor neurons in stick insects.
    Stolz T; Diesner M; Neupert S; Hess ME; Delgado-Betancourt E; Pflüger HJ; Schmidt J
    J Neurophysiol; 2019 Dec; 122(6):2388-2413. PubMed ID: 31619113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-Specific Motor Efference during a Rhythmic Motor Pattern.
    Alonso I; Sanchez Merlinsky A; Szczupak L
    J Neurosci; 2020 Feb; 40(9):1888-1896. PubMed ID: 31980584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Octopamine-immunoreactive neurons in the brain and subesophageal ganglion of the hawkmoth Manduca sexta.
    Dacks AM; Christensen TA; Agricola HJ; Wollweber L; Hildebrand JG
    J Comp Neurol; 2005 Aug; 488(3):255-68. PubMed ID: 15952164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The physiology of wandering behaviour in Manduca sexta. III. Organization of wandering behaviour in the larval nervous system.
    Dominick OS; Truman JW
    J Exp Biol; 1986 Mar; 121():115-32. PubMed ID: 3958674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peripheral distribution of presynaptic sites of abdominal motor and modulatory neurons in Manduca sexta larvae.
    Consoulas C; Johnston RM; Pflüger HJ; Levine RB
    J Comp Neurol; 1999 Jul; 410(1):4-19. PubMed ID: 10397391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of descending dorsal unpaired median (DUM) neurons of the locust suboesophageal ganglion.
    Bräunig P; Burrows M; Morris OT
    Acta Biol Hung; 2004; 55(1-4):13-9. PubMed ID: 15270214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions between segmental leg central pattern generators during fictive rhythms in the locust.
    Ryckebusch S; Laurent G
    J Neurophysiol; 1994 Dec; 72(6):2771-85. PubMed ID: 7897488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotory behavior in the hawkmoth Manduca sexta: kinematic and electromyographic analyses of the thoracic legs in larvae and adults.
    Johnston RM; Levine RB
    J Exp Biol; 1996 Apr; 199(Pt 4):759-74. PubMed ID: 8788085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish.
    Buss RR; Drapeau P
    J Neurophysiol; 2001 Jul; 86(1):197-210. PubMed ID: 11431502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging fictive locomotor patterns in larval Drosophila.
    Pulver SR; Bayley TG; Taylor AL; Berni J; Bate M; Hedwig B
    J Neurophysiol; 2015 Nov; 114(5):2564-77. PubMed ID: 26311188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.