BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 9851944)

  • 1. Neuronal nitric oxide synthase is expressed in rat vascular smooth muscle cells: activation by angiotensin II in hypertension.
    Boulanger CM; Heymes C; Benessiano J; Geske RS; Lévy BI; Vanhoutte PM
    Circ Res; 1998 Dec 14-28; 83(12):1271-8. PubMed ID: 9851944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells.
    Zhu X; Jackson EK
    Am J Physiol Renal Physiol; 2017 Apr; 312(4):F565-F576. PubMed ID: 28100502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of involvement of endothelin-1 in angiotensin II-induced contraction of the isolated rat tail artery.
    Jiang Y; Triggle CR
    Br J Pharmacol; 2000 Nov; 131(6):1055-64. PubMed ID: 11082111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. L-arginine supplementation reduces cardiac noradrenergic neurotransmission in spontaneously hypertensive rats.
    Lee CW; Li D; Channon KM; Paterson DJ
    J Mol Cell Cardiol; 2009 Jul; 47(1):149-55. PubMed ID: 19362092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelial cell Orai1 is essential for endothelium-dependent contraction of mouse carotid arteries in normotensive and hypertensive mice.
    Li X; Lei ZC; Lo CY; Jan TY; Lau CW; Yao XQ
    Acta Pharmacol Sin; 2024 May; 45(5):975-987. PubMed ID: 38279042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterogeneous Impact of ROCK2 on Carotid and Cerebrovascular Function.
    De Silva TM; Kinzenbaw DA; Modrick ML; Reinhardt LD; Faraci FM
    Hypertension; 2016 Sep; 68(3):809-17. PubMed ID: 27432870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II-infused hypertensive rats.
    Kang KT; Sullivan JC; Spradley FT; d'Uscio LV; Katusic ZS; Pollock JS
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H718-24. PubMed ID: 21148769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential effects of long-term slow-pressor and subpressor angiotensin II on contractile and relaxant reactivity of resistance versus conductance arteries.
    Kopf PG; Phelps LE; Schupbach CD; Johnson AK; Peuler JD
    Physiol Rep; 2018 Mar; 6(5):. PubMed ID: 29504268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation by AT(1) and AT(2) receptors of angiotensin II-stimulated cyclic GMP production in rat uterine artery and aorta.
    Hannan RE; Gaspari TA; Davis EA; Widdop RE
    Br J Pharmacol; 2004 Mar; 141(6):1024-31. PubMed ID: 14993097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropilin-1 maintains dimethylarginine dimethylaminohydrolase 1 expression in endothelial cells, and contributes to protection from angiotensin II-induced hypertension.
    Wang Y; Wang E; Zhang Y; Madamsetty VS; Ji B; Radisky DC; Grande JP; Misra S; Mukhopadhyay D
    FASEB J; 2019 Jan; 33(1):494-500. PubMed ID: 30118322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the antihypertensive effects of folic acid and resveratrol in spontaneously hypertensive rats combined with hyperhomocysteinemia.
    Lu Y; Zhang L; Wang C; Gong C
    SAGE Open Med; 2023; 11():20503121231220813. PubMed ID: 38144881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of L-arginine on Nitric Oxide Synthesis and Larval Metamorphosis of
    Zhu YT; Liang LL; Liu TT; Liang X; Yang JL
    Genes (Basel); 2023 Feb; 14(2):. PubMed ID: 36833378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in Distribution and Biological Effects of F
    Micurova A; Kluknavsky M; Liskova S; Balis P; Skratek M; Okruhlicova L; Manka J; Bernatova I
    Biomedicines; 2021 Dec; 9(12):. PubMed ID: 34944671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of circadian neurovascular function and its implications.
    Mitchell JW; Gillette MU
    Front Neurosci; 2023; 17():1196606. PubMed ID: 37732312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics Studies Suggest That Nitric Oxide Donor Furoxans Inhibit In Vitro Vascular Smooth Muscle Cell Proliferation by Nitric Oxide-Independent Mechanisms.
    Lazzarato L; Bianchi L; Andolfo A; Granata A; Lombardi M; Sinelli M; Rolando B; Carini M; Corsini A; Fruttero R; Arnaboldi L
    Molecules; 2023 Jul; 28(15):. PubMed ID: 37570694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting Soluble Guanylyl Cyclase during Ischemia and Reperfusion.
    Mace EH; Kimlinger MJ; Billings FT; Lopez MG
    Cells; 2023 Jul; 12(14):. PubMed ID: 37508567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular nitric oxide resistance in type 2 diabetes.
    Bahadoran Z; Mirmiran P; Kashfi K; Ghasemi A
    Cell Death Dis; 2023 Jul; 14(7):410. PubMed ID: 37433795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and quantification of protein nitration sites in human coronary artery smooth muscle cells in the absence and presence of peroxynitrous acid/peroxynitrite.
    Xu S; Chuang CY; Hawkins CL; Hägglund P; Davies MJ
    Redox Biol; 2023 Aug; 64():102799. PubMed ID: 37413764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological Assessment of the NO-Dependent Endothelial Function.
    Boughaleb H; Lobysheva I; Dei Zotti F; Balligand JL; Montiel V
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does sympathetic vasoconstriction contribute to metabolism: Perfusion matching in exercising skeletal muscle?
    DeLorey DS; Clifford PS
    Front Physiol; 2022; 13():980524. PubMed ID: 36171966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.