BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9852012)

  • 41. Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL.
    Martinez-Argudo I; Little R; Dixon R
    Mol Microbiol; 2004 Jun; 52(6):1731-44. PubMed ID: 15186421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of a mutation in the putative nucleotide binding site of the nitrogen regulatory protein NTRC on its positive control function.
    Austin S; Kundrot C; Dixon R
    Nucleic Acids Res; 1991 May; 19(9):2281-7. PubMed ID: 2041769
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.
    Steenhoudt O; Vanderleyden J
    FEMS Microbiol Rev; 2000 Oct; 24(4):487-506. PubMed ID: 10978548
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The C-terminal domain of NifL is sufficient to inhibit NifA activity.
    Narberhaus F; Lee HS; Schmitz RA; He L; Kustu S
    J Bacteriol; 1995 Sep; 177(17):5078-87. PubMed ID: 7665487
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of PII proteins in nitrogen fixation control of Herbaspirillum seropedicae strain SmR1.
    Noindorf L; Bonatto AC; Monteiro RA; Souza EM; Rigo LU; Pedrosa FO; Steffens MB; Chubatsu LS
    BMC Microbiol; 2011 Jan; 11():8. PubMed ID: 21223584
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activation of the glnA, glnK, and nac promoters as Escherichia coli undergoes the transition from nitrogen excess growth to nitrogen starvation.
    Atkinson MR; Blauwkamp TA; Bondarenko V; Studitsky V; Ninfa AJ
    J Bacteriol; 2002 Oct; 184(19):5358-63. PubMed ID: 12218022
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum.
    Zou X; Zhu Y; Pohlmann EL; Li J; Zhang Y; Roberts GP
    Microbiology (Reading); 2008 Sep; 154(Pt 9):2689-2699. PubMed ID: 18757802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Azorhizobium caulinodans PII and GlnK proteins control nitrogen fixation and ammonia assimilation.
    Michel-Reydellet N; Kaminski PA
    J Bacteriol; 1999 Apr; 181(8):2655-8. PubMed ID: 10198037
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation.
    Blauwkamp TA; Ninfa AJ
    Mol Microbiol; 2002 Oct; 46(1):203-14. PubMed ID: 12366843
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of the Klebsiella pneumoniae regulatory gene nifL upon the transcriptional activator protein NifA.
    Morett E; Kreutzer R; Cannon W; Buck M
    Mol Microbiol; 1990 Aug; 4(8):1253-8. PubMed ID: 2280685
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Context-dependent functions of the PII and GlnK signal transduction proteins in Escherichia coli.
    Atkinson MR; Blauwkamp TA; Ninfa AJ
    J Bacteriol; 2002 Oct; 184(19):5364-75. PubMed ID: 12218023
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of glnB and glnD gene products in regulation of the glnALG operon of Escherichia coli.
    Bueno R; Pahel G; Magasanik B
    J Bacteriol; 1985 Nov; 164(2):816-22. PubMed ID: 2865248
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of GlnK1 from Methanosarcina mazei strain Gö1: complementation of an Escherichia coli glnK mutant strain by GlnK1.
    Ehlers C; Grabbe R; Veit K; Schmitz RA
    J Bacteriol; 2002 Feb; 184(4):1028-40. PubMed ID: 11807063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of Rhodospirillum rubrum GlnB variants that are altered in their ability to interact with different targets in response to nitrogen status signals.
    Zhu Y; Conrad MC; Zhang Y; Roberts GP
    J Bacteriol; 2006 Mar; 188(5):1866-74. PubMed ID: 16484197
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NifL of Klebsiella pneumoniae: redox characterization in relation to the nitrogen source.
    Klopprogge K; Schmitz RA
    Biochim Biophys Acta; 1999 May; 1431(2):462-70. PubMed ID: 10350621
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reversible uridylylation of the Escherichia coli PII signal transduction protein regulates its ability to stimulate the dephosphorylation of the transcription factor nitrogen regulator I (NRI or NtrC).
    Atkinson MR; Kamberov ES; Weiss RL; Ninfa AJ
    J Biol Chem; 1994 Nov; 269(45):28288-93. PubMed ID: 7961766
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nac-mediated repression of the serA promoter of Escherichia coli.
    Blauwkamp TA; Ninfa AJ
    Mol Microbiol; 2002 Jul; 45(2):351-63. PubMed ID: 12123449
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus.
    Pawlowski A; Riedel KU; Klipp W; Dreiskemper P; Gross S; Bierhoff H; Drepper T; Masepohl B
    J Bacteriol; 2003 Sep; 185(17):5240-7. PubMed ID: 12923097
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oxygen control of nif gene expression in Klebsiella pneumoniae depends on NifL reduction at the cytoplasmic membrane by electrons derived from the reduced quinone pool.
    Grabbe R; Schmitz RA
    Eur J Biochem; 2003 Apr; 270(7):1555-66. PubMed ID: 12654011
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mutant forms of the Azotobacter vinelandii transcriptional activator NifA resistant to inhibition by the NifL regulatory protein.
    Reyes-Ramirez F; Little R; Dixon R
    J Bacteriol; 2002 Dec; 184(24):6777-85. PubMed ID: 12446627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.