These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9853672)
1. Analysis of essential histidine residues of maize branching enzymes by chemical modification and site-directed mutagenesis. Funane K; Libessart N; Stewart D; Michishita T; Preiss J J Protein Chem; 1998 Oct; 17(7):579-90. PubMed ID: 9853672 [TBL] [Abstract][Full Text] [Related]
2. Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes. Hong S; Preiss J Arch Biochem Biophys; 2000 Jun; 378(2):349-55. PubMed ID: 10860552 [TBL] [Abstract][Full Text] [Related]
3. Identification of essential histidine residues in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase: analysis by chemical modification with diethyl pyrocarbonate and site-directed mutagenesis. Sheflyan GY; Duewel HS; Chen G; Woodard RW Biochemistry; 1999 Oct; 38(43):14320-9. PubMed ID: 10572007 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the active center of branching enzyme II from maize endosperm. Kuriki T; Guan H; Sivak M; Preiss J J Protein Chem; 1996 Apr; 15(3):305-13. PubMed ID: 8804578 [TBL] [Abstract][Full Text] [Related]
5. Evidence for essential arginine residues at the active sites of maize branching enzymes. Cao H; Preiss J J Protein Chem; 1996 Apr; 15(3):291-304. PubMed ID: 8804577 [TBL] [Abstract][Full Text] [Related]
6. Histidine residues 139, 363 and 500 are essential for catalytic activity of cofactor-independent phosphoglyceromutase from developing endosperm of the castor plant. Huang Y; Dennis DT Eur J Biochem; 1995 Apr; 229(2):395-402. PubMed ID: 7744062 [TBL] [Abstract][Full Text] [Related]
7. Expression of branching enzyme II of maize endosperm in Escherichia coli. Guan HP; Baba T; Preiss J Cell Mol Biol (Noisy-le-grand); 1994 Nov; 40(7):981-8. PubMed ID: 7849565 [TBL] [Abstract][Full Text] [Related]
8. Heparinase I from Flavobacterium heparinum. Identification of a critical histidine residue essential for catalysis as probed by chemical modification and site-directed mutagenesis. Godavarti R; Cooney CL; Langer R; Sasisekharan R Biochemistry; 1996 May; 35(21):6846-52. PubMed ID: 8639636 [TBL] [Abstract][Full Text] [Related]
9. Analysis of the amino terminus of maize branching enzyme II by polymerase chain reaction random mutagenesis. Hong S; Mikkelsen R; Preiss J Arch Biochem Biophys; 2001 Feb; 386(1):62-8. PubMed ID: 11361001 [TBL] [Abstract][Full Text] [Related]
10. Site-directed mutagenesis evidence for arginine-384 residue at the active site of maize branching enzyme II. Cao H; Preiss J J Protein Chem; 1999 Apr; 18(3):379-86. PubMed ID: 10395456 [TBL] [Abstract][Full Text] [Related]
11. Identification of multiple phosphorylation sites on maize endosperm starch branching enzyme IIb, a key enzyme in amylopectin biosynthesis. Makhmoudova A; Williams D; Brewer D; Massey S; Patterson J; Silva A; Vassall KA; Liu F; Subedi S; Harauz G; Siu KW; Tetlow IJ; Emes MJ J Biol Chem; 2014 Mar; 289(13):9233-46. PubMed ID: 24550386 [TBL] [Abstract][Full Text] [Related]
12. High-level expression of branching enzyme II from maize endosperm in Escherichia coli. Libessart N; Preiss J Protein Expr Purif; 1998 Oct; 14(1):1-7. PubMed ID: 9758744 [TBL] [Abstract][Full Text] [Related]
13. Arginine residue 384 at the catalytic center is important for branching enzyme II from maize endosperm. Libessart N; Preiss J Arch Biochem Biophys; 1998 Dec; 360(1):135-41. PubMed ID: 9826438 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic studies on CDP-6-deoxy-L-threo-D-glycero-4-hexulose 3-dehydrase identification of His-220 as the active-site base by chemical modification and site-directed mutagenesis. Lei Y; Ploux O; Liu HW Biochemistry; 1995 Apr; 34(14):4643-54. PubMed ID: 7718567 [TBL] [Abstract][Full Text] [Related]
15. Properties and active center of the thermostable branching enzyme from Bacillus stearothermophilus. Takata H; Takaha T; Kuriki T; Okada S; Takagi M; Imanaka T Appl Environ Microbiol; 1994 Sep; 60(9):3096-104. PubMed ID: 7944355 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis and chemical modification of histidine residues on an alpha-class chick liver glutathione S-transferase CL 3-3. Histidines are not needed for the activity of the enzyme and diethylpyrocarbonate modifies both histidine and lysine residues. Chang LH; Tam MF Eur J Biochem; 1993 Feb; 211(3):805-11. PubMed ID: 8436137 [TBL] [Abstract][Full Text] [Related]
17. The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli. Bragg PD; Hou C Eur J Biochem; 1996 Oct; 241(2):611-8. PubMed ID: 8917463 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification of prostaglandin H synthase with diethyl pyrocarbonate. Zhang X; Tsai AL; Kulmacz RJ Biochemistry; 1992 Mar; 31(9):2528-38. PubMed ID: 1312350 [TBL] [Abstract][Full Text] [Related]
19. Role of histidine residues in EcoP15I DNA methyltransferase activity as probed by chemical modification and site-directed mutagenesis. Jois PS; Madhu N; Rao DN Biochem J; 2008 Mar; 410(3):543-53. PubMed ID: 17995451 [TBL] [Abstract][Full Text] [Related]