These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 9854019)

  • 1. Calsequestrin: more than 'only' a luminal Ca2+ buffer inside the sarcoplasmic reticulum.
    Szegedi C; Sárközi S; Herzog A; Jóna I; Varsányi M
    Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):19-22. PubMed ID: 9854019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of muscle ryanodine receptor calcium release channels by proteins in the sarcoplasmic reticulum lumen.
    Beard NA; Wei L; Dulhunty AF
    Clin Exp Pharmacol Physiol; 2009 Mar; 36(3):340-5. PubMed ID: 19278523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A calcium-induced calcium release mechanism mediated by calsequestrin.
    Lee YS; Keener JP
    J Theor Biol; 2008 Aug; 253(4):668-79. PubMed ID: 18538346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual regulation of the skeletal muscle ryanodine receptor by triadin and calsequestrin.
    Ohkura M; Furukawa K; Fujimori H; Kuruma A; Kawano S; Hiraoka M; Kuniyasu A; Nakayama H; Ohizumi Y
    Biochemistry; 1998 Sep; 37(37):12987-93. PubMed ID: 9737879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the ryanodine receptor calcium release channel of the sarcoplasmic reticulum in skeletal muscle.
    Csernoch L
    Acta Physiol Hung; 1999; 86(2):77-97. PubMed ID: 10741867
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation.
    Beard NA; Casarotto MG; Wei L; Varsányi M; Laver DR; Dulhunty AF
    Biophys J; 2005 May; 88(5):3444-54. PubMed ID: 15731387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Luminal pH regulated calcium release kinetics in sarcoplasmic reticulum vesicles.
    Donoso P; Beltrán M; Hidalgo C
    Biochemistry; 1996 Oct; 35(41):13419-25. PubMed ID: 8873610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The sarcoplasmic reticulum Ca2+ store arrangement in vascular smooth muscle.
    Rainbow RD; Macmillan D; McCarron JG
    Cell Calcium; 2009; 46(5-6):313-22. PubMed ID: 19836074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle-specific GSTM2-2 on the luminal side of the sarcoplasmic reticulum modifies RyR ion channel activity.
    Wei L; Abdellatif YA; Liu D; Kimura T; Coggan M; Gallant EM; Beard NA; Board PG; Dulhunty AF
    Int J Biochem Cell Biol; 2008; 40(8):1616-28. PubMed ID: 18308613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphorylation of skeletal muscle calsequestrin enhances its Ca2+ binding capacity and promotes its association with junctin.
    Beard NA; Wei L; Cheung SN; Kimura T; Varsányi M; Dulhunty AF
    Cell Calcium; 2008 Oct; 44(4):363-73. PubMed ID: 19230141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes.
    Kohlhaas M; Zhang T; Seidler T; Zibrova D; Dybkova N; Steen A; Wagner S; Chen L; Brown JH; Bers DM; Maier LS
    Circ Res; 2006 Feb; 98(2):235-44. PubMed ID: 16373600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of junctin causes adaptive changes in cardiac myocyte Ca(2+) signaling.
    Kirchhefer U; Hanske G; Jones LR; Justus I; Kaestner L; Lipp P; Schmitz W; Neumann J
    Cell Calcium; 2006 Feb; 39(2):131-42. PubMed ID: 16289269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of drugs with muscle-related side effects and affinity for calsequestrin on the calcium regulatory function of sarcoplasmic reticulum microsomes.
    Kim E; Tam M; Siems WF; Kang C
    Mol Pharmacol; 2005 Dec; 68(6):1708-15. PubMed ID: 16141311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of calcium channel in sarcoplasmic reticulum by calsequestrin.
    Kawasaki T; Kasai M
    Biochem Biophys Res Commun; 1994 Mar; 199(3):1120-7. PubMed ID: 8147852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of luminal calcium on Ca2+ release channel activity of sarcoplasmic reticulum in situ.
    Kurebayashi N; Ogawa Y
    Biophys J; 1998 Apr; 74(4):1795-807. PubMed ID: 9545042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitation-contraction coupling from the 1950s into the new millennium.
    Dulhunty AF
    Clin Exp Pharmacol Physiol; 2006 Sep; 33(9):763-72. PubMed ID: 16922804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.