BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 985423)

  • 1. The biochemical pathway for the breakdown of methyl cyanide (acetonitrile) in bacteria.
    Firmin JL; Gray DO
    Biochem J; 1976 Aug; 158(2):223-9. PubMed ID: 985423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial metabolism of C1 and C2 compounds. The role of acetate during growth of Pseudomonas AM1 on C1 compounds, ethanol and beta-hydroxybutyrate.
    Dunstan PM; Anthony C
    Biochem J; 1973 Apr; 132(4):797-801. PubMed ID: 4721612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tricarboxylic acid cycle in Dictyostelium discoideum. Metabolite concentrations, oxygen uptake and 14c-labelled amino acid labelling patterns.
    Kelly PJ; Kelleher JK; Wright BE
    Biochem J; 1979 Dec; 184(3):581-8. PubMed ID: 540050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of acetonitrile and propionitrile by Nocardia rhodochrous LL100-21.
    DiGeronimo MJ; Antoine AD
    Appl Environ Microbiol; 1976 Jun; 31(6):900-6. PubMed ID: 938041
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Acetate metabolism in Ectothiorhodospira shaposhnikovii growing in the dark].
    Zakharchuk LM; IvanovskiÄ­ RN; Kondrat'eva EN
    Mikrobiologiia; 1980; 49(3):383-8. PubMed ID: 7402118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tricarboxylic acid-cycle metabolism in brain. Effect of fluoroacetate and fluorocitrate on the labelling of glutamate, aspartate, glutamine and gamma-aminobutyrate.
    Clarke DD; Nicklas WJ; Berl S
    Biochem J; 1970 Nov; 120(2):345-51. PubMed ID: 5493856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remaining acetamide in acetonitrile degradation using nitrile hydratase- and amidase-producing microorganisms.
    Kohyama E; Dohi M; Yoshimura A; Yoshida T; Nagasawa T
    Appl Microbiol Biotechnol; 2007 Mar; 74(4):829-35. PubMed ID: 17136368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial metabolism of C 1 and C 2 compounds. The involvement of glycollate in the metabolism of ethanol and of acetate by Pseudomonas AM1.
    Dunstan PM; Anthony C; Drabble WT
    Biochem J; 1972 Jun; 128(1):99-106. PubMed ID: 5085665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation of cyanide compounds by a Pseudomonas species (S1).
    Dhillon JK; Shivaraman N
    Can J Microbiol; 1999 Mar; 45(3):201-8. PubMed ID: 10408092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The uptake of 2-deoxy-D-glucose by Pseudomonas aeruginosa and its regulation.
    Mukkada AJ; Long GL; Romano AH
    Biochem J; 1973 Feb; 132(2):155-62. PubMed ID: 4199013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tricarboxylic acid cycle in Dictyostelium discoideum. A model of the cycle at preculmination and aggregation.
    Kelly PJ; Kelleher JK; Wright BE
    Biochem J; 1979 Dec; 184(3):589-97. PubMed ID: 540051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios.
    Kelleher JK; Bryan BM; Mallet RT; Holleran AL; Murphy AN; Fiskum G
    Biochem J; 1987 Sep; 246(3):633-9. PubMed ID: 3120698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of intermediary metabolism in germinating pea cotyledons. The pathway of ethanol metabolism and the role of the tricarboxylic acid cycle.
    Cameron DS; Cossins EA
    Biochem J; 1967 Oct; 105(1):323-31. PubMed ID: 6060449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo.
    Heath DF; Threlfall CJ
    Biochem J; 1968 Nov; 110(2):337-62. PubMed ID: 5726212
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Acetate photometabolism in Ectothiorhodospira shaposhnikovii].
    Firsov NN; IvanovskiÄ­ RN
    Mikrobiologiia; 1975; 44(2):197-201. PubMed ID: 1226131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of C4-dicarboxylic acids from acetate by a glyoxylate bypass of the tricarboxylic acid cycle.
    KORNBERG HL; MADSEN NB
    Biochim Biophys Acta; 1957 Jun; 24(3):651-3. PubMed ID: 13436500
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delayed cyanide poisoning following acetonitrile ingestion.
    Mueller M; Borland C
    Postgrad Med J; 1997 May; 73(859):299-300. PubMed ID: 9196706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolism of C2 compounds in microorganisms. 2. The effect of carbon dioxide on the incorporation of [14C] acetate by acetate-grown Pseudomonas KB1.
    KORNBERG HL; QUAYLE JR
    Biochem J; 1958 Mar; 68(3):542-9. PubMed ID: 13522657
    [No Abstract]   [Full Text] [Related]  

  • 20. The metabolism of C2 compounds in micro-organisms. I. The incorporation of [2-14C] acetate by Pseudomonas fluorescens, and by a Corynebacterium, grown on ammonium acetate.
    KORNBERG HL
    Biochem J; 1958 Mar; 68(3):535-42. PubMed ID: 13522656
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.