BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 985467)

  • 1. Sodium-dependent efflux of K+ and Rb+ through the activated sodium channel of neuroblastoma cells.
    Palfrey C; Littauer UZ
    Biochem Biophys Res Commun; 1976 Sep; 72(1):209-15. PubMed ID: 985467
    [No Abstract]   [Full Text] [Related]  

  • 2. Rubidium efflux from neural cell lines through voltage-dependent potassium channels.
    Arner LS; Stallcup WB
    Dev Biol; 1981 Apr; 83(1):138-45. PubMed ID: 6263736
    [No Abstract]   [Full Text] [Related]  

  • 3. [Transport of Rb+ via activated sodium channels of clone N 18 phi 1 neuroblastoma cells].
    Gulaia NM; Lishko VK; Volkov GL; Govseeva NN
    Ukr Biokhim Zh (1978); 1983; 55(6):657-61. PubMed ID: 6318414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of 42K+ and 86Rb+ transport and electrical membrane properties in exponentially growing neuroblastoma cells.
    Boonstra J; Mummery CL; Tertoolen LG; Van der Saag PT; De Laat SW
    Biochim Biophys Acta; 1981 Apr; 643(1):89-100. PubMed ID: 7236694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active potassium transport and (Na+ plus K+)ATPase activity in cultured glioma and neuroblastoma cells.
    Kimelberg HK
    J Neurochem; 1974 Jun; 22(6):971-6. PubMed ID: 4277344
    [No Abstract]   [Full Text] [Related]  

  • 6. The interaction of 2,4-dinitrophenol with anaerobic Rb+ transport across the yeast cell membrane.
    Borst-Pauwels GW; Wolters GH; Henricks JJ
    Biochim Biophys Acta; 1971 Feb; 225(2):269-76. PubMed ID: 5552810
    [No Abstract]   [Full Text] [Related]  

  • 7. Differentiation of human neuroblastoma cells in culture.
    Littauer UZ; Giovanni MY; Glick MC
    Biochem Biophys Res Commun; 1979 Jun; 88(3):933-9. PubMed ID: 465090
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride.
    Maizels M
    J Physiol; 1968 Apr; 195(3):657-79. PubMed ID: 5649640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of molecular aspects of Na+ and Ca2+ uptakes by embryonic cardiac cells in culture.
    Fosset M; De Barry J; Lenoir MC; Lazdunski M
    J Biol Chem; 1977 Sep; 252(17):6112-7. PubMed ID: 561068
    [No Abstract]   [Full Text] [Related]  

  • 10. Specific monosaccharide inhibition of active sodium channels in neuroblastoma cells.
    Giovanni MY; Kessel D; Glick MC
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):1250-4. PubMed ID: 6262760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythrocyte membrane sulfhydryl groups and the active transport of cations.
    Rega AF; Rothstein A; Weed RI
    J Cell Physiol; 1967 Aug; 70(1):45-52. PubMed ID: 5584613
    [No Abstract]   [Full Text] [Related]  

  • 12. Sodium and rubidium fluxes in rat red blood cells.
    Beaugé LA; Ortíz O
    J Physiol; 1971 Nov; 218(3):533-49. PubMed ID: 5133948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium and sodium fluxes in the phytopathogenic fungus Fusarium oxysporum var. lini.
    Cabello-Hurtado F; Blasco GJ; Ramos J
    Curr Microbiol; 2000 Nov; 41(5):363-7. PubMed ID: 11014875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rubidium and sodium permeability of the ATP-sensitive K+ channel in single rat pancreatic beta-cells.
    Ashcroft FM; Kakei M; Kelly RP
    J Physiol; 1989 Jan; 408():413-29. PubMed ID: 2674421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Dependence of ion transport across the plasma membrane on cell culture density. II. Active and passive cation transport during the growth of L cell cultures].
    Marakhova II; Sal'nikov KV; Vinogradova TA
    Tsitologiia; 1985 Oct; 27(10):1156-63. PubMed ID: 2416101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of fatty acids on plasma membrane lipid dynamics and cation permeability in neuroblastoma cells.
    Boonstra J; Nelemans SA; Feijen A; Bierman A; Van Zoelen EJ; Van der Saag PT; De Laat SW
    Biochim Biophys Acta; 1982 Nov; 692(3):321-9. PubMed ID: 6293565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation activation of the pig kidney sodium pump: transmembrane allosteric effects of sodium.
    Karlish SJ; Stein WD
    J Physiol; 1985 Feb; 359():119-49. PubMed ID: 2582111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reversal of triparanol-induced cataracts in the rat. II. Exchange of 22 Na, 42 K, and 86 Rb in cataractous and clearing lenses.
    Harris JE; Gruber L
    Invest Ophthalmol; 1972 Jul; 11(7):608-16. PubMed ID: 5046560
    [No Abstract]   [Full Text] [Related]  

  • 19. Plasma membrane studies on drug sensitive and resistant cell lines. IV. Rubidium transport and ouabain binding.
    Geny B; Lelievre L; Charlemagne D; Paraf A
    Exp Cell Res; 1979 May; 120(2):383-93. PubMed ID: 436965
    [No Abstract]   [Full Text] [Related]  

  • 20. Hyposmotic shock: effects on rubidium/potassium efflux in normal and ischemic rat hearts, assessed by 87Rb and 31P NMR.
    Jilkina O; Kuzio B; Kupriyanov VV
    Biochim Biophys Acta; 2003 Jan; 1637(1):20-30. PubMed ID: 12527403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.